
www.manaraa.com



www.manaraa.com



www.manaraa.com

Pamela T. Geriner . Thomas R. Gulledge 
William P. Hutzler (Eds.) 

Software Engineering 
Economics and 
Declining Budgets 

With 63 Figures 

Springer-Verlag 

Berlin Heidelberg New York 
London Paris Tokyo 
Hong Kong Barcelona 
Budapest 



www.manaraa.com

Dr. Pamela T. Geriner 
Economic Analysis Center 
The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102-3481, USA 

Professor Dr. Thomas R Gulledge 
The Institute of Public Policy 
George Mason University 
4400 University Drive 
Fairfax, VA 22030-4444, USA 

Dr. William P. Hutzler 
Economic Analysis Center 
The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102-3481, USA 

ISBN-13: 978-3-642-78880-2 e-ISBN-13: 978-3-642-78878-9 
DOl: 10.1007/978-3-642-78878-9 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data 
banks. Duplication of this publication or parts thereof is only permitted under the provisi
ons ofthe German Copyright Law of September 9, 1965, in its version ofJune 24,1985, and a 
copyright fee must always be paid. Violations fall under the prosecution act ofthe German 
Copyright Law. 

© Springer-Verlag Berlin· Heidelberg 1994 
Softcover reprint of the hardcover 1 st edition 1994 

The use of registered names, trademarks, etc. in this publication does not imply, even in the 
absence of a specific statement, that such names are exempt from the relevant protective 
laws and regulations and therefore free for general use. 

4312202-543210- Printed on acid-free paper 



www.manaraa.com

PREFACE 

This volume presents a selection of the presentations from the second annual 

conference on Analytical Methods in Software Engineering Economics held at The 

MITRE Corporation in McLean, Virginia. The papers are representative of the issues 

that are of interest to researchers in the economics of information systems and 

software engineering economics. 

The MITRE Software Engineering Economics Conference was designed to 

address some of the new and difficult challenges that face our profession. The 

primary objective of these annual conferences is to address new theoretical and 

applications directions in Software Engineering Economics, a relatively new 

discipline that deals with the management and control of all segments of the software 

life-cycle. This collection of papers places additional emphasis on the Federal 

Government's Information Resource Management (IRM) initiative. The issues that 

relate to the economics of IRM, such as Business Re-engineering, Functional 

Economic Analysis, Organizational Process Modeling and the Economics of Reuse, 

are addressed. 

We thank William R. Flury from the MITRE Economic Analysis Center for 

serving as a conference co-chair and everyone else who helped to make this 

conference a success, especially those who graciously allowed us to include their 

work in this volume. 

Pamela T. Geriner and William P. Hutzler 
Economic Analysis Center 
The MITRE Corporation 

McLean, Virginia 22102 USA 

Thomas R. Gulledge 
The Institute of Public Policy 

George Mason University 
Fairfax, Virginia 22030 USA 



www.manaraa.com

TABLE OF CONTENTS 

Measurement Activity and SEI Process Maturity Levels 1 

Richard Werling 

Economical Software Starts With Business; Experiencing CASE 15 
Tool Projects with Business. Industry and Government 

William J. Hobler. Jr. 

The Challenge of Managing and Developing a Very Large 
and Dynamic Management Information System 

Palmer W. Smith 

The MERMAID Project 

A. J. C. Cowderoy, J. O. Jenkins, and A. Poulymenakou 

Software Reuse and Productivity: An Empirical View 

Thomas P. Frazier 

A Software Cost Model of Reuse Within a Single System 

R. D. Cruickshank and J. E. Gaffney, Jr. 

39 

61 

69 

83 

Forestry as an Alternative Metaphor for Software Development: 95 
Applying Multiobjective Impact Analysis 

Gregory K. Shea and Clement L. McGowan 



www.manaraa.com

VIII 

Tools for Managing Repository Objects 

Rajiv D. Banker. Tomas Isalwwitz. Robert 1. Kauffman. 
Rachna Kumar. and Dani Zweig 

Methodological Issues in Functional Economic Analysis 

Thomas R. Gulledge. Edgar H. Sibley. and Ted K. Yamashita 

Using IDEFO in Functional Economic Analysis 

Minder Chen and Edgar H. Sibley 

Performance Evaluation Gradient 

Henry Neimeier 

Defense Blood Standard System Functional Economic 
Analysis: A Case Study 

Carla von Bernewitz and Marty Zizzi 

117 

139 

167 

183 

205 



www.manaraa.com

MEASUREMENT ACTIVITY AND SEI PROCESS MATURI1Y LEVELS 

I. OVERVIEW 

by 

Richard Werling 

Software Productivity Consortium 

2214 Rock Hill Road 

Herndon, VIrginia 22070 

This paper suggests that improving an organization's software project measurement 

function is both necessary and economically effective in raising that organization's 

maturity level. 

Measurement and measurement-related activities can provide a foundation on which 

organizations achieve higher process maturity levels, as defined by the Software Engi

neering Institute (SEI). No software development organization can progress to high

er levels of process maturity until its measurement program is institutionalized. Many 

requirements for higher maturity levels implicitly rely on functioning measurement 

systems to measure properties of the software products and the software develop

ment process, derive metrics from those measurements, and support effective action 

based on the results (Humphrey and Sweet 1987). 

The paper describes highlights of the SEI capability maturity model, demonstrates 

that effective measurement is essential in successful implementation of a maturity 

growth program, and that software measurement helps produce higher quality, more 

useful software products and processes, while improving the level of both process and 

capability maturity. 

II. RAISING MATURITY LEVELS IS NECESSARY 

Suppliers of systems containing software must attain higher process maturity levels 

to remain competitive. Recent trends in U.S. Government procurements of systems 

containing software make this essential. For example, prospective vendors are con

sidered high-risk suppliers if their software process maturity is below level 2. To be 

responsive to procurements now in process, developers must demonstrate that their 

software development process meets requirements of SEI levels 2 or 3. It has been 



www.manaraa.com

2 

suggested that U.S. Government acquisition organizations require aggressive action 

to encourage suppliers who now have level 1 software processes to improve to level 

2, and require level 2 organizations to dedicate resources to improve their process to 

reach level 3. 

An organization's "software process" is considered here to be that set of activities, 

methods, tools, and practices that guide its people in the production of software. It 

is useful to think of "process" in terms of its interaction with people, methods, and 

technology. 

Senior management's legitimate concerns about costs are met by observing that over

head cost for a measurement program-two to four percent of cost for software deve

lopment-is minor compared to the improvements in project performance. 

ID. SEI AND THE CONCEPT OF PROCESS MATURITY LEVEL 

The Software Engineering Institute has developed two models of how organizations 

develop software. The first "process maturity model" (Humphrey and Sweet, 1987) 

gave the preliminary version of a process maturity questionnaire. This preliminary 

version was intended to provide "a simple tool for identifying areas where an organi

zation's software procesS needed improvement. Unfortunately, the questionnaire 

was too often regarded as the 'model' rather than as a vehicle for exploring process 

maturity issues" (Paulk, 1991, vii). 

In the next four years SEI, working with industry and government, evolved the soft

ware process maturity framework into a fully defined product, the capability maturity 

model for software (CMM). The CMM emphasizes the key practices that evidence 

an organization's commitment and ability to perform software development, and " ... 

provides organizations with more effective guidance for establishing process improve

ment programs than was offered by the [preliminary process] maturity question

naire." (ibid.) 

The CMM model serves three operational needs. It provides: (1) an underlying struc
ture for consistent, reliable assessments of software processes; (2) a vehicle for apply

ing process management and quality improvement concepts to software development 

and maintenance; and (3) a guide for organizations to use in planning their evolution 

toward a culture of engineering excellence. In this latter role, the CMM is designed 

to help software organizations: 

• characterize the state of their current software practice (the state of their art) 
in terms of "process" 



www.manaraa.com

3 

• set goals for improving their process 

• set priorities for implementing changes in their process. 

A. Characteristics and definitions of software process maturity levels 

Major characteristics of the five levels of SEI software process maturity are briefly 

summarized in '!able 1, which also indicates the actions required to reach the next 
higher level. At the present time, more than 80 percent of software development or
ganizations are at SEI levell, and about 10 percent at level 2. The combined total 

of organizations at levels 3-5 is under ten percent, although a higher proportion of 

individual projects may be found at these levels. 

B. Evolution of Measurement-related activities 

Can this complex model be partitioned in some way to make it more tractable? The 

string of measurement activities can help make the model more practical to work 
with. Figure 1 illustrates graphically the emphasis of measurement, and how measure
ment functions evolve, for each maturity level. It shows the specific SEI maturity lev

els at which each function is required. For example, the function "Project estimating 
and Tracking", shows that estimating, measuring and tracking of project size, schedule, 
risk, and cost is required at level 2 and at all higher maturity levels. By level three, 

emphasis of measurement functions expands from project to process, which is contin
ued through level 5. Systematic process change can begin at level 3. 

SEI Levels 4-5 

Process Analysis 
and Optimization 

Error Analysis 

Process Tracking 

Project Estimating and Tracking 

SEI Levels 4-5 

SEI Levels 3-5 

SEI Levels 1-5 

Figure 1. Measurement foundation for maturity levels 2-5. 

At level 4, a second major change occurs: a managed and controlled metrics database 

has been put in place for process measurement, analysis, and improvement across all 



www.manaraa.com

4 

Thble 1. Characteristics and Definitions of Maturity Levels 

Process Level Typical Characteristics Implications 

5. Optimizing With its process under Measurements support the continuing 
statistical control, the emphasis on optimizing methods: to 
organization now has a control; to improve activities that inject 
quantitative basis for errors; and to reduce process variability. 
continuous process Organization's major focus is now on 
improvement and improving and optimizing its operations. 
optimization. Quantitative More sophisticated analyses of error 
measurements are fed back and cost data; routine error prevention 
into the process. and process improvement activities. 

4. Managed Use detailed measures to This is when significant quality 
quantitatively understand improvements begin. The organization 
and control software process bases its operating decisions on quanti-
and products. Reasonable tative process data and conducts 
statistical control in place extensive analyses of data gathered 
over process, thus over during software reviews and tests. 
costs, schedules, and quality Process database in place, with data 
of product and process. from projects throughout organization. 

3. Defined For both management and Organization has made both 
engineering activities, organizational and methodological 
process for each project is improvements, including design and 
now documented and code reviews and training programs, and 
standardized. All projects has achieved an increased 
use a documented and organizational focus on software 
approved version of the engineering. Next need to learn to 
organization's standard measure and analyze process 
software process. performance, and to manage quality. 

2. Repeatable Basic management processes Organization has a stable, repeatable 
are in place to track project process by improving management of: 
requirements, cost, schedule, requirements; commitments; quality 
and functionality. Process assurance; configuration; and sub-
discipline helps developers contracts. Next needs defined standard 
repeat earlier successes with process, peer reviews, and improved 
similar applications. Quality training; integrated software manage-
is variable. ment and intergroup coordination. 

1. Initial Has ilI-defined procedures Developers' process must become 
and controls. Developers stabilized and repeatable before orderly 
driven from crisis to crisis by process improvement is possible. Start 
unplanned priorities and un- with estimates of size, cost, risks, and 
managed change. Surprises schedules; performance tracking; change 
cause unpredictable cost, control; and improve management of: 
schedule, and quality. requirements; commitments; baseline 
Success depends on configurations; quality assurance; and 
individual heroic efforts. subcontracts. 



www.manaraa.com

5 

projects. The emphasis is on routine measurement and analysis of software process 

activity, and on management of software quality. Level 5 represents a process that 

is well enough understood to be continually optimized. Major activities then shift to 

prevention of defects, management of process change and of technology innovation. 

The CMM is structured to reflect the evolution of software development activities 

at higher maturity levels, both in depth and in detail.' Thble 2 shows how measurement 

activities evolve from levels 2 through 5. At levell, functions typically collect insufficient 

data to control and manage a software project. For level 2, a minimum data set is col

lected and used for management. Level 3 functions add to leve12's by defining the orga

nization's software development process and by estimating for a project's defined soft

ware process (which is obtained by tailoring the organization's standard process). Levels 

4 and 5 maintain a managed and controlled database containing process metries across 

all projects. 

Thble 2. Measurement-Related Activities Evolve Across Maturity Levels 

Level 2, Repeatable Process Level 3, Defined 

Level 2 data, plus: 
Estimate, plan, and measure 
software size, resources, Maintain formal records for 
staffing levels, costs, risks, progress of unit develop-
and schedules. ment 

Collect data on cost, size, Develop standards for 
schedule. software measurement. 

Maintain profiles over time Maintain formal records 

Levels 4 and 5 

Levels 2 and 3 data, plus: 

Routinely estimate, project, 
compare to actua1s, and analyze 
errors found in reviews and 
inspections of 

requirements, 
designs, and 
code and test 

for: 
units designed; build! 
release content; units 
completing test; units 
integrated; test progress, 
requirements changes, 
and staffing. 

for test coverage. Routinely analyze software 
productivity for major process 

Develop experience-based steps. 

Maintain profiles over time 
for use of target system 
memory, throughput, and 
110 channels. 

Collect statistics on design 
errors and on code and test 
errors found in reviews and 
inspections. 

metrics for estimating cost, 
size, and schedule. Maintain managed, controlled 

process database for process 
Coordinate software metrics across all projects. 
process asset metrics 
database at organization Use metrics in systematic 
level efforts to prevent defects, 

assess beneficial process 
innovations, and 
process change. 

manage 

Collect process and product 
data, and analyze, according 
to documented procedures 



www.manaraa.com

6 

Level 4 then focuses on: further identifying and quantifying the organization's software 

development processes; defining quantitative goals for product and process quality; se

lecting process and product data to be collected and analyses to be performed on the 

data; and process and product metrics to be used in managing a project. The software 

product quality goals are flowed down to subcontractors. 

At level 5, the organization begins the continuing task of optimizing the process. It 

begins by using metrics in systematic efforts to prevent defects, identify and assess 

beneficial process innovations, and manage process change. It institutionalizes many 

systematic techniques to incorporate lessons learned from process measurements. 

c. Evolution of Management-related activities 

A sound measurement program is necessary but not sufficient to attain higher process 

maturity levels. Senior management must act to standardize an organization's basic 

software development process. 10 reach level 2, authority from senior management 

is needed to act in three other process maturity level 2 areas: 

• Provide training, with standard required courses for software managers, tech
nicalleaders, and especially for those who may be unfamiliar with the differ
ences in managing system, hardware and software projects. 

• Promote more rigorous management of software development projects by for
malizing the organization's basic software development methods in stan
dards and requiring their use, and by controlling the changes that occur as 
projects evolve. 

• Require an effective organization for software development and ensure that 
independent functions are in place, for each project involving software de
velopment, for configuration control and for software quality assurance. 

Thble 3 illustrates the evolution for the functions of training, rigorous management, and 

definition and documentation of methods and standards. 'Ihlining for Level 3 provides 

standard courses for: quality management, managing software professionals, basic soft

ware methods, inspections, and specific courses required for each job function. Level 

4 and 5 organizations build on the organization's standard process, with courses on quali

ty management, quantitative process management, advanced development technology, 

prototyping, and planning and development of technical careers. 



www.manaraa.com

7 

Thble 3. Evolution of Management .Activities by Capability Maturity Level 

LeveI2-"Repeatable" LeveI3-"Defined" Levels 4 and 5 

Standard Courses Provided by Training Function: 

Standard required courses 
for new software managers, 
technical leaders; and for 
reviews, and inspectiom. 

Planning, estimating, and 
tracking product size, resource 
requirements, staffing levels, 
schedules, risks, and costs. 

Quality management 

Managing software 
professionals 

BcWc software methods 

Inspections 

Courses required for each job 

Quality management 

Quantitative process 
management 

Advanced development 
methods 

Prototyping 

Management of require- function which are defined in Planning and development 
ments, configuration,quality training plans 
assurance; selection and of technical careers 
management of subcontracts. Project-specific training needs 

Organization Rigorously Manages: 
Commitments 

Allocated requirements, 
changes to requirements, and 
risks of software products 

Software Size 

Schedules 

Cost 

SQA planning and execution 

CM planning and execution 

Project performance, tracked by Project performance against 
key activity in the defined quality plan for each project 
standard process 

Software product engineering 
using appropriate state-of
practice tools and methods 

Developing and documenting 
process standards and methods 

Development tools, methods, 
process definitions, and 
standard<; which are under CM 
for each project 

Product defect levels, 
inspection and test cover
age and efficiency. error 
distrIbution, and effective
ness of tools and methods 

Track and review quality 
performance of sub
contractors 

Process metric definitions 
maintained under CM 
control 

Basic Methods and Standards are Defined. Documented. and Followed for: 
Software development 
planning: estimating software 
size; projecting. planning. 
and scheduling resources 

Making changes to allocated 
requirements, designs, and 
code 

Conducting reviews, audits, 
and inspections 

Estimating resources for each Inspections, tools, methods, 
key activity in defined software quality plans, and quality 
process tracking by process task 

Customization of process 
and environment 

Managing risks: plans identify 
technical and business exposures 
and define process means to 
address them Prototyping and quanti

tative measures of goodness 
Staffing plans for specia1 skiIls of design 
and application domains 



www.manaraa.com

8 

Iv. SEI-BASED ASSESSMENTS 

Why is this structure so important to software developers? As noted before, large 

federal government procurements may specify that developers meet minimum pro

cess maturity levels, and may require that a "software capability evaluation" be per

formed by a government team to validate the process level. The basis for the team's 

evaluation is the same SEI process maturity model used for an internal SEI-based 

assessment. By performing their own SEI-based assessments, developers can guide 

their own process improvement work, concentrating on areas that provide them with 

competitive advantages. 

SEI assessments begin with four to six representative project leaders completing an 

assessment questionnaire. The assessment team later follows through with probing, 

"open-ended" questions to verify that the process characteristics indicated by the 

project leaders' questionnaires are typical of the organization's standard processes. 

For an organization to be certified as having attained a particular level of software 

process maturity, investigation of responses to SEI assessment questions must show 

the presence of from 80 to 90 percent of the characteristics required for that level. 

A. Currently used questionnaire 

The questionnaire version used since 1987, published in (Humphrey and Sweet, 1987), 

has 85 process-related questions plus 16 (ungraded) questions on tools and technolo

gy. Only the 85 process-related questions are used to determine an organization's 

process maturity level. Thble 4, Process Maturity Levels and Metrics, shows the distri

bution of metrics-related questions across the process maturity levels. The question

naire's focus on measurement is important; 38 percent of the 85 items in the current 

(1987) version questionnaire are related to measurement. 

Thble 4. Process Maturity Levels and Metrics 

Maturity Total Number Related To Metrics Questions 
Level of Questions Metrics as Percent of Total 

5 4 2 50 

4 16 11 69 

3 32 7 22 

2 33 12 36 

lOtal 85 32 38 



www.manaraa.com

9 

It must be emphasized that an assessment questionnaire serves only as the starting 

point for process assessments. It is only a tool used by the assessment team to identify 

areas for more detailed on-site investigation in assessments and evaluations. 

B. Highlights of the Capability Maturity Model 

Currently SEI is working to provide questionnaires based on the CMM by about the 

end of 1992. New questionnaires, based on the CMM shown in Thbles 5 and 6, are 

expected to be used in much the same way as the current one. Th understand future, 

CMM-based, questionnaires requires a brief look at the CMM (Paulk et at. 1991 

28,40). Thble 5, "Key process areas of the SEI capability maturity model", shows a 

total of 18 "key process areas" that organizations must have in place to qualify for 

various levels of process maturity. Of the Six key process areas for level 2, seven for 

level 3, two for level 4, and 3 for level 5. Areas listed in italic type have significant 

measurement-related components. Acronyms, shown at the right edge of the table, 

are used in this section as shorthand for the full name of a key process area. For exam

ple, "CM" is used to represent "software configuration management." 

Thble 5. Key Process Areas of the SEI Capability Maturity Model. 

Process Level Key Process Areas· Acronym 

5. Optimizing Prevent defects (DP) 
Manage process change (PC) 
Manage technology innovation (TI) 

4. Managed Process measurement and analysis (PA) 
Management of quality (QM) 

3. Defined Focus on organization process (PF) 
Define organization process (PD) 
Training programs (TP) 
Integrated software management (1M) 
Softwareproductengineenng (PE) 
Intergroup coordination (IC) 
Peer reviews (PR) 

2. Repeatable Manage requirements (RM) 
Plan software projects (PP) 
Track and oversee software projects (PT) 
Manage software subcontracts (SM) 
Software quality assurance (SQA) (QA) 
Software configuration management (eM) 

• Key Process Areas in italic type are measurement-related. 



www.manaraa.com

10 

C. CMM-based questionnaires 

Thble 5 showed that the CMM identifies 18 key process areas (KPA), such as project 

planning, quality assurance, peer reviews, and defect discovery and prevention. For 

each key process area the CMM identifies goals and a number of key practices that 

help realize the goals. Each key process area has five categories of key practices: 

1. Practices that show a commitment to perform (e.g., establishing policies and 

procedures) 

2. Practices that show an organization's ability to perform (e.g., training and 
tools), 

3. Activities performed to guarantee that the key process is realized, 

4. Practices that monitor the implementation of the activities (e.g., measure
ments), 

5. Practices that verify the implementation of the activities (e.g., reviews and au
dits). 

The extent of the CMM is indicated in Thble 6, which shows a total of 344 practices, 

91 are primarily metrics-related activities. In five key process areas (process measure

ment and analysis, quality management, software project tracking and oversight, inte

grated software management, and software project planning) the majority of practices 

are metrics-related. 

Thble 6. Extent of the Capability Maturity Model 

CMM Practices 

Key Ability 
Maturity Process to Sub-

Level Areas Goals Commit Perform Activities Monitor Verify total 

5 3 7 7 13 26 8 6 60 

4 2 7 2 7 24 2 9 44 

3 7 22 8 26 56 12 16 118 

2 6 19 9 2S 63 6 19 122 

TOTAL 18 55 26 71 169 28 50 344 

Thble 6 shows that the CMM has a total of 18 separate key process areas. Those KPAs 

contain 55 separate goals. Thus, an assessment team will consult 



www.manaraa.com

11 

• 26 practices that show a commitment to perform (e.g., establishing policies 

and procedures) 

• 71 practices that show an organization's ability to perform (e.g., training and 

tools) 

• 169 activities performed to guarantee that the key process is realized 

• 28 practices that monitor the implementation of the activities (e.g., measure
ments) 

• 50 practices that verify the implementation of the activities (e.g., reviews and 
audits 

The level 2 KPA, "project tracking and oversight" (PT), requires tracking of: software 

size, costs, schedule, computer resources, risks, and software engineering technical 

activities. Tracking these activities helps to realize two goals explicitly stated in the 

CMM: 

Goall. 

Goal 2. 

Actual results and performance of the software project are tracked 

against documented and approved plans, 

Corrective actions are taken when actual results and performance 

of the software project deviate significantly from the plans. 

Some of the 344 practices shown in Thble 6 will become questions in the successor 

to the original questionnaire. SEI plans to have the CMM serve as a "map that guides 

the on-site investigation" for both internal-process assessments and for govemment

sponsored software capability evaluation. Several different questionnaire versions 

are expected. When published, perhaps in late 1992, each new questionnaire version 

is expected to be about 120 questions in length. 

V. MANAGEMENT AND ORGANIZATIONAL REQUIREMENTS 

The four of every five software developing organizations which are at the initial level level 

of software process maturity today. are intensely interested in understanding the nature 

of the changes that must be made for them to survive the step to level 2. A single-page 

summary might help to understand the the magnitude of the challenge, and a strategy 

for making the step relatively quickly. Thble 7, Summary of activities needed at SEI 

maturity level two, was designed to meet this need. It combines both the measurement

related and management-related activities for the functions of training, rigorous man

agement, and basic methods and standards for the organization's software process. 



www.manaraa.com

12 

Thb1e 7. Summary of activities needed at SEI maturity level two. 

Requirement Evidence of compliance 

Measurement Formal procedures are followed to: 

Basic Method<; 
and Standards 
are Defined, 
Documented, 
and 
Followed for: 

Organization 
Rigorously 
Manages: 

Standard 
Coun;es 
Provided by 
Training 
Function: 

Estimate, plan, and measure: software size, resourre usage, staffing 
levels, development 006t, schedules, and risks [software technical risks and 
risks for resources, schedule, and 006ts] from proposal 
throughout project life. 

Maintain profiles over time, compared to plan for: (a) status of each 
requirement allocated to software, and staffing; (b) units designed, 
build/release content, units completing test, units integrated, test progress, 
and trouble reports; (c) achievement of schedule milestones [e.g., units 
designed, build/release content, units completing test, units integrated, and 
test progress]; (d) CSCI size, v.ork completed, effort and funds expended per 
esc and esCI; (e) critical target computer resources [utilization of target 
system memory, I/O channels, and throughput]; (t) 006t and schedule status 
of software subcontracts; and (g) numbers of product reviews, process reviews, 
and audits. 

Collect statistics on design errors and on code and test errors found in reviews 
and inspections. 

Software design, code, and test; estimating software size; projecting, planning, 
and scheduling resources 

Making changes to requirements, designs, and code 

Conducting reviews, inspections, and audits 

Commitments and risks 

Requirements, changes in requirements, configuration management 
[ie., who can make changes to products], and size of software products 

Schedules and 006t 

Quality assurance and Configuration Management 

Standard, required courses for software development managers and 
technical leaders; and coun;es in conducting reviews, inspections, and audits. 

Planning, estimating, and tracking for: product size, checkpoint performance, 
resourre requirements, and staffing levels 

Change control and configuration management 

Organization's process of commitment/approval/accountability 

Subcontract management 



www.manaraa.com

13 

The CMM represents and codifies good software engineering practices. Senior man

agement might object to the cost, staff size, and training needed to conform to the 

CMM. Individual line engineers might object to the CMM's emphases on measuring 

and controlling their activities. Nevertheless, there is no doubt that any organization 

which wants to win Government contracts for software development must have a soft

ware process with explicitly defined, performed, monitored, measured and verified 

activities. This paper has shown why a good measurement and metrics program is the 

correct place to begin. 

VI. REFERENCES 

Humphrey, W.S., and W.L. Sweet 
1987 

Humphrey, W.S., D.H. Kitson, and 
T.e. Kasse 
1989 

Humphrey, W.S. 
1989 

Paulk, M. et al. 
1991 

Werling, R., e. McGowan, and 
R.D. Cruickshank 
1992 

A Method for Assessing the Software Engineering 
Capability of Contractors, CMU/SEI-87.:rR-23. 
Pittsburgh, Pennsylvania: Software 
Engineering Institute. 

The State of Software Engineering Practice: A 
Preliminary Report, CMU/SEI-89-1R-l. 
Pittsburgh, Pennsylvania: Software 
Engineering Institute. 

Mtmaging the Software Process. Reading, 
Massachusetts: .Addison-Wesley. 

Capability Maturity Model for Software, 
CMUlSEI-9 1-TR-24. Pittsburgh, Pennsylvania: 
Software Engineering Institute. 

Using Metrics to Raise lOur Process Maturity 
Level. Herndon, VA Software Productivity 
Consortium. Thtorial given at the Fourth 
Annual Oregon Workshop on Software 
Metrics, Silver Falls, OR, March 23, 1992. 



www.manaraa.com

Economical Software Starts With Business 

Experiencing CASE Tool Projects 

with Business, Industry and Government 

William J. Hobler Jr. 

JAMES MARTIN & Co. 

2100 Reston Parkway 

Reston, VA 22091 

1. INTRODUCTION 

Productivity, quality, and flexibility are critical software engineering issues 

for the 1990s and beyond. Total Quality Management shows that productivity 

and quality are directly equivalent to speed. Speed of delivery is first in the 

top ten systems development issues in the minds of system development 

executives 1. The late 1980s saw the world reconfigured by the fall of com

munism, the unification of Europe, and the emergence of the Pacific Rim 

nations as world class manufacturers. Much of this change can be attributed 

to the nature of global communications. Not only can nations see and hear 

conditions in other nations via television but whole industries are 

coordinated via telecommunications. The Boeing 747 aircraft uses parts or 

assemblies, whose production is coordinated using information networks, 

from 22 different nations from Europe west to Japan. The world wide 

political change has increased the complexity of business and government 

environments to an extent not yet fully realized. The majority of business 

and government software systems no longer support either efficient 

execution of international policy or successful competition in world markets. 

The most successful software in this environment is that which simplifies the 

human process, what is successful is software that automates complexity. 

The world wide electronic funds transfer system simplifies transfer of 



www.manaraa.com

16 

financial resources and enabled the phenomenal increase in third world 

manufacturing of high technology products. 

American computer hardware developers have responded to this dynamic 

environment by doubling the power of computing chips every year since 

1984.2 

CPU Power 
Growth 10,000 '--+--l '"-----....,. .. 

100 .-~----------------l------~~------l~--------------l 

tn 
~ -~ 1 +-~~~+-~~--+-~~--+-~~--+-~~--+-~ 

0.1 oI.------' ______________ --J'--______________ '--____________ ----! 

1885 1lIII0 11185 2000 

Year 
After Sun Mlcroayatema 

Projected CPU power in MIPS. Note that in 1992 delivered CPUs 

exceed the predicted 81 MIPS. 

As illustrated this expansion of power is expected to continue through the 

year 2000. 

Concurrently Capers Jones3 estimated the productivity of programmers in the 

United States to be 5 Function Points per person-month in 1990 and CitiBank 

estimates the growth in software productivity at 15% per year. The curves 

are dramatically different. 

In effect there is more computing power available and more need to apply 

that power than the software industry can fill. 



www.manaraa.com

17 

Software projects are required to: 

• produce more complex functionality, 

• in less time, 

• reduce maintenance, 

• increase reliability and 

• increase security 

with fewer resources. It is imperative that software engineers address ways 

of accomplishing these objectives. 

100 
.t: -c:: 

(1)0 
'EE 
0"-
0.. CD 

0. 

Programming ~-----------, 
Productivity 

g c:: 10~--------------~~~~~--------------~ 
.- 0 
-(I) 
0,,-
cCD 
::So. 
U. 

"-
CD 
0. 

1 
1990 

Afler Caper, Jonn 
and Cill Ban k 

1.1 Assertion 

1995 

Year 

Programmer productivity growth 

2000 

This paper asserts that the elements of computer systems that can radically 

improve business and system development productivity are in use and that 

concepts for the integration and use of the development systems are being 

applied. These systems can support enterprise engineering, business 

re~ngineering, information systems forward engineering, and information 



www.manaraa.com

18 

systems re-engineering. Further, the most economical use of software 

engineering is to apply it an~ total systems engineering practice toward 

integrating the existing tools and concepts into comprehensive system 

development platforms and methodologies to be used by non-information 

system trained business and government people. 

1.2 Approach 

The software engineering discipline must first broaden its scope into 

engineering software and hardware systems that support enterprise people 

achieve their daily objectives. Discussions concerning the viability of one 

language or another for specific applications pale in importance when 

measured against the critical need to enable global competition to improve 

the quality of life for both the industrialized and third world. The definition 

conforms to the precepts of total systems engineering in which all elements 

of a system are considered parts of the whole. The argument support this 

paper's assertion is experiential in nature. It draws from software 

engineering, hardware engineering, human engineering and management 

research and experience as documented in publications specific to those 

disciplines. It also draws on experiencing government and industry 

enterprises who are or have re-engineered their business and exploited 

information technology in the process. 

2. ENGINEERING DISCIPLINES 

All engineering disciplines exhibit features in common. Computer systems 

and software engineering, though to young to be considered mature, exhibit 

some of the same characteristics. GeneJa11y the characteristics are: 

Graphic Guidelines. The end product concept is drawn as a guide to all 

productive effort. Even in building a house an architectect's drawing 

guides the remaining work. The architect's drawing illustrate the form 

that serve the buyer's function. In most disciplines this drawing is 

maintained as a computer file, a model that can be easily modified. 



www.manaraa.com

19 

Small Teams. The overall problem is broken into small separable 

projects. Home construction is accomplished by small teams of 

plumbers, carpenters, and electricians among others. The efficiency of 

small teams in software development is thoroughly discussed by Dr. 

Frederick Brooks in the classic Mytfr.icaC Man Montrr.4. 

Control of Interfaces. The efforts of the various projects are 

coordinated at their interface. Interface control can be illustrated by the 

electrical industry's agreement concerning the color coding of home 

electrical wiring as documented in the national building code. Electrical 

engineers are much further advanced in setting and using standards than 

software engineers which makes control of electrical interfaces much 

easier than computer interfaces. 

Standard Techniques. Codification of standard analysis techniques is 

required to assure a safe and high quality product. In civil engineering 

many of these techniques are implemented in CADD tools. Stress 

analysis can be accomplished on assemblies without having to fabricate 

and test the assembly. Thereby, less experienced engineers can 

accomplish complex routine work freeing the more experienced 

engineers for application of more advanced technology. 

Intelligent Graphics. The final products are described graphically and, 

in some cases, these graphics serve as instructions to machines that 

produce the product. Perhaps the most advanced application of this 

concept is in production of silicon computer devices. 

Standard Parts. Assemblies and sub-assemblies are constructed from 

standard parts. The standardization of parts allows many manufacturers 

compete for business and releases the engineer to assemble most of not 

all of the product without having to complete a detailed part by part 

engineering analysis. In the housing industry, the great majority of new 

homes are built from standard parts. It is no coincidence that building 

material's dimensions come in multiples of four feet. 



www.manaraa.com

20 

Comprehensive Automation. Tools developed to assist the engineer 

provide facilities to involve the product user directly in the design and 

development process. Architects can walk users through the interior of a 

building via computer simulation. Virtual reality systems are allowing 

Japanese homeowners to design their own kitchens and bathrooms. 

2.1 Software engineering follows these more mature 

disciplines 

Although software engineering is still very young, the engineering features 

cited are all present in information systems technology. 

Context Diagram. Almost all of the upper CASE (Computer Aided 

Systems Engineering) tools provide for drawing some form of a 'context' 

diagram. This representation may require more than one diagram but the 

information system including data, software and hardware systems 

describing the long term end product is illustrated. These drawings 

represent models of computer systems that mimic the data and activities 

of the business. They are, normally, not models of the business, rather 

models of business information systems. 

Small Development Teams. Several development methodologies 

describe techni.ques or algorithms for sub-setting large computer system 

designs into small separable business area or business system projects. 

The theory of these techniques are 10 to 15 years old. These techniques 

are supported by several CASE tools5. 

Procedure Calls. The software industry is just adopting a philosophy 

that sets a standard calling procedure within a project, program, or 

organization. In the Object Oriented segment of the industry there is an 

effort to standardize the calling procedure across all Object Oriented 

software. This and the defacto SQL standard are examples of beginning 

attempts to control information system interfaces. Much more needs to 

be done. 



www.manaraa.com

21 

Standard Techniques. Information systems development literature is 

replete with techniques for producing safe high quality software. CASE 

tools variously well implement some of these techniques. In this area 

the contrast between most software engineers and engineers from other 

disciplines is striking. Software engineers know techniques that 

consistently improve the quality of their products but make little use of 

the techniques. Capers Jones reports that although simple peer review 

desk checks of source code can reduce errors dramatically, a great 

majority of information system organizations do not use this technique. 

By contrast automotive engineers are adopting any measure to assure 

that a high quality product is delivered in as little elapsed time as 

possible. One possible and unfortunate conclusion could be that 

software engineers are not as interested in customer satisfaction as are 

automotive engineers. 

Intelligent Graphics. The CASE tool industry has many graphic 

descriptions of information systems. The most mature representations 

are of the data base design. The CASE tool can generate all of the Data 

Description Language to establish the data structure directly from the 

diagram and its underlying documentation. Generating program logic in 

source code is not as mature. In most cases some sort of Process 

Description Language is needed to generate source code. Some CASE 

tools actually require that source code be written for any but the most 

simple data manipulation. 

Standard Parts. Perhaps most encouraging information industry trend is 

Object Oriented concepts. One must applaud the Object Management 

Group in its success toward standardizing the interface to object 

libraries. What is needed are tools that permit designers to assemble 

library objects into business systems without having to employ source 

code. A graphical interface tool into the object manager is needed. 

Comprehensive Automation. Information system developers have 

prototyping tools that permit working with users designing business 



www.manaraa.com

22 

systems. These tools are _ of varying depth with the more complete 

prototype being fully functional systems which are ready for 

implementation as soon as the user accepts them. 

2.2 Maturing software engineering 

Relatively isolated efforts are maturing the discipline of software 

engineering in the direction of automation. To fully mature the software 

engineering discipline should emulate manufacturing engineering. 

Manufacturing engineering is integrating the analysis, design, and 

manufacturing process. Computer Integrated Manufacturing (CIM) 

development is being pursued on an international scale. Their goals are to; 

• flexibly produce a great variety of parts and assemblies with 

minimum human intervention in the manufacturing process, 

• transfer specifications and machine instructions across the world 

electronically, and 

• have all the resulting assemblies uniformly work together as the 

intended product. 

The CIM computer extends the engineer's influence into the manufacturing 

floor. What is needed to bring this economy to software engineering? 

3. EXTENDED SOFTWARE ENGINEERING 

The concept of a Software Integrated Manufacturing (SIM) system is 

software engineering, expanded to include conceptualization, analysis, and 

manufacturing. It can realize the economy needed to meet the challenges of 

the 1990's because it can leverage the technical skill and knowledge of 

software engineers for use by business people. This goal is within reach, 

most of the needed concepts and tools are commercially available. The 

unifying concept has been discussed but the body of software engineers has 

not coalesced toward realizing the concept. Software engineering does not 

the same drive for SIM as is focussed on CIM. 



www.manaraa.com

23 

3.1 Total Software Engineering Concept 

The great majority of software in existence and being produced is the 

software supporting commerce and government. When compared to operating 

system software; or real time control systems; or military command. control 

and communications software. the software that supports the complexity of 

commerce and government is pedestrian. Most commercial calculations. data 

structures. and procedures are simple and massively redundant. Yet. in this 

rapidly changing world economic and business environment we are building 

pedestrian and redundant software at 5 function points per person per month. 

Software engineering must rationalize the process of producing the everyday 

software. 

The concept is a comprehensive system that models the way business systems 

are conceived. analyzed. designed. produced. and maintained. The SIM must 

address the total system; hardware. system software. application software. 

and manual processes. This is a model that can be exercised by business or 

government people with the result that the business or government experts 

develop and maintain total business systems that match their exact needs 

over the total life cycle. 

While most current Computer Aided System Engineering (CASE) tools build 

models of the business information system what is needed is a model of the 

process of engineering business systems. This viewpoint is to model the 

process business uses to conceive of and implement business systems. Since 

business models are relatively simple collections of related business data. 

procedures. and rules that each assume only a finite number of forms. 

software engineering should be able to model how these elements are 

assembled into useful business systems. Once this process model is 

developed implementing it for use by business people should be of 

comparable difficulty as assembling a Computer Integrated Manufacturing 

system for use by manufacturers. 



www.manaraa.com

24 

3.2 Characteristics of software SIM 

Most of the characteristics of an integrated system are present in 

commercially available software or existing prototypes. Many of them were 

developed to support businesses people using system development 

methodologies. These isolated concepts if aggregated, would free software 

engineers to pursue some of the more technical challenges of information 

technology. 

3.2.1 CONCEPT TO GRAVE 

Software SIM must support the business from its concept until it is 

replaced. The business person who develops a new business concept 

should be able to (1) analyze the concept to determine the potential 

return on investment, (2) develop the rules, procedures and data that 

apply, (3) separate them into human and computer based processes, (4) 

generate the information system (5) mount the system on any platform 

needed, (6) integrate the total system into the organization's operations, 

(7) change the system as needed by the business, and (7) replace the 

system as needed without interrupting business operations. These 

capabilities recognize information systems as one part of the business 

process but completely integrates them into the business. 

No CASE tool provides this breadth of capability. The Integrated CASE 

tools start with building models of data and procedural processes and 

finish with generating application software on the selected platform6. 

They support modification of the software system during its lifetime. 

Other tools 7 permit embedding forward chaining and backward chaining 

rules in the procedural portions of the logic, but this must be 

accomplished by experienced programmers. Logic processing is much 

needed by commerce and government but the software industry isolates 

logic and procedural processing from each other. Modification of the 

hardware platform is difficult in that it may require substantial changes 



www.manaraa.com

25 

to the application software. Yet, facilities to accommodate hardware 

changes are available. The most familiar of these are the numerous cross 

compiler, less available are facilities that support adding or deleting 

hardware capabilities. These facilities are present in some operating 

system software and in isolated application development and 

maintenance systems.8 

3.2.2 No TRAINING REQUIRED 

The facilities provided the business person should be so familiar within 

the business context that the business user should not require training or 

education, or minimize training, above that of their business discipline. 

In the United States business people, managers and workers alike, are 

computer literate. Daily, they use software systems that support the 

theory and operation of their chosen discipline. Accountants have 

powerful financial accounting, controls, and analysis tools. In addition 

the recent emergence of Business Process Improvement and Total 

Quality Management techniques have introduced powerful business 

process analysis techniques to business and government people. The 

software SIM tool should extend the look and feel of this familiar 

software and these new techniques into expressing the data, processes 

and rules needed to support the business person. While comparing the 

Purchase Order Amount with the Invoice Amount to authorize payment 

the Purchasing Officer should be able to ask, why is this process needed 

or why does a trained accountant have to do this? Moreover, if the 

Purchasing Officer decides that if the Purchase Order Amount and 

Invoice Amount are equal then the invoice should be paid without 

human intervention, then the software SIM should generate the proc

esses to pay the matched invoices. The ability to use business expressed 

rules as the basis for executable code was demonstrated by the RUBRIC 

Project9. 



www.manaraa.com

26 

3.2.3 TOTAL SYSTEM SUPPORT 

Just as manufacturing engineers recognize the manufacturing system as 

comprising the material handling system, the machines, the manual 

processes, and the people involved, software engineering must expend 

its view. Computer systems are only one part of the business system, a 

tool to assist business people in developing and operating their business 

systems must account for all of the elements in the business system. One 

decomposition of a business system into its sub-systems yields five 

systems. 

The manual sub-system. All human enterprise has a component that 

can only be accomplished by human processes. In the Computer 

Integrated Manufacturing process, component design, raw material 

specification, material logistics, and many other processes are 

accomplished by people. Software SIM must have facilities for 

designating certain processes as manual and specify the system 

interfaces to them. 

No current I-CASE tool addresses this interface from the manual 

sub-system view. Nor do they assist in developing the manual 

procedures required. 

The man-machine interface sub-system. It is estimated that 80 percent 

of CPU cycles are devoted to graphical user interface processing. The 

interface sub-system is so complex a challenge that several system 

development tools are devoted to just this function. These tools are an 

indication of the capability of the software engineering discipline to 

leverage their skills across many less experienced developers. 

The application software sub-system. This sub-system contains the 

business data structures, rules, and procedures supporting the business 

user. As far as the user is concerned this is the only sub-system visible 

to them. 



www.manaraa.com

The operating 

software sub-

system. The 

operating software 

consists of all of 

the system software 

needed to 

administer the 

application 

27 

Manual Sub-system 

Human Interface Sub-system 

Application Sub-system 

Operating Sub-system 

Hardware Sub-system 

Total Business System sub-systems 

software on the hardware sub-system. In terms of Peter G. W. Keen lO 

this and the hardware sub-system constitute the Information Technology 

Platform. 

The hardware sub-system. This may be as simple as a single 

workstation or as complex as a world wide network. What is needed is a 

tool that assists in deployment of the man-machine interface sub-system 

and the application software sub-system into the operating software sub

system and the hardware sub-system. One of the client-server CASE 

tools has just such services available for a limited selection of hardware 

and software sub-systems. ll The facilities of the Object Request Broker, 

developed by the Object Management Group, and object oriented 

technology hold promise of being able to deliver this type of flexibility 

to business. 

4. A SIM CONCEPT 

This concept is a collection of features currently implemented in a number of 

CASE tools and methodologies. There are several techniques drawn from 

either Business Process Improvement or Total Quality Management 

disciplines. The objective of bringing all of these features together into one 

system is to provide business people with the ability to develop and manage 

their information resources as integral elements of their business systems 



www.manaraa.com

28 

with minimum effort and minimum recourse to specialized technical 

resources. The concept allows many programming staff people to migrate to 

business analysis and operational responsibilities. 

4.1 81M Functionality 

A Software Integrated Manufacturing system should manufacture 95% of 

business software systems for 80% of the existing information technology 

platforms. This choice of numbers recognizes the commonality of procedures 

and data structures in business, industry, and government and the volatility 

of hardware and system software. A SIM capability should easily maintain 

pace with 95% of the business procedures used world wide, the proliferation 

of new technical capabilities and the lack of standardization of languages, 

operating systems, telecommunications protocols, and hardware provides 

SIM developers with a more rapidly moving technical environment. 

4.1.1 DEVELOPMENT FUNCTIONS 

The development environment must be graphical in nature using the 

interface most familiar to business users. In the graphics environment the 

user should be able to manipulate graphical models of the Business 

Process, Value Stream or Business System needed. The SIM should be able 

to check the validity of the models and interpret them as they would 

operate on the implementation platform. The business user should be able 

to draw a picture of what is needed and then operate an interpretation of 

the results. The prototyping capability is available, to some extent, in 

many current CASE tools. The ability to interpret graphical 

representations into operating prototypes is less available because most 

prototypes, if they are to emulate fully operational systems, require 

writing significant amounts of code. Early development versions of 

graphical interpreters existing academia and isolated commercial software 

developers. SIM must process graphical representations of the following 

Business System features into executable modules; 



www.manaraa.com

29 

Graphical User Interfaces. Development software that assists X

windowsTM, WindowsTM, Presentation Manager™, and MacIntosh™ 

developers already exists. 

Data Structures. The more traditional CASE tools use Entity 

Relationship Diagrams as the data modeling graphic. This diagram can 

directly translate into relation data base data definition language. For 

business people to effectively use Entity Relationship Diagram 

techniques requires significant training. Even though the formal training 

may require only a day or two it takes several months of practice before 

real proficiency is obtained. Object Oriented CASE tools define data 

structures as attributes in a Class and relationships that exist among 

classes. While the Object Oriented definitions are currently textual vice 

graphical at least one graphic based Object Oriented tool is being 

developed 12. 

Procedural Logic. Procedural logic is currently derived from 

dependency diagrams and action diagrams13. CASE tool development 

efforts are expanding the dependency diagram functionality to include 

actions that trigger following procedures and actions that block the start 

of procedures until all preconditions are met. Procedural logic should be 

derived from business process diagramming described in Business 

Process Improvement literature or Process Flow Diagrams from 

continuous process improvement in Total Quality Management. With the 

exception of Action Diagrams these diagrams are familiar to most 

business people. 

Current CASE tools either ignore procedural logic and present the 

business with option to process menus, edit or enter data, and produce 

reports or they require the business person write procedural code. The 

state-of-the-art tools construct program description language in an 

action diagram through presenting the operator with menu options 

specific to the process description logic being input. The SIM must 

move beyond this dependence on pseudo code to intelligent graphics. 



www.manaraa.com

30 

Rule Based Logic. Most business and government activities are 

governed by rules known to and easily expressed by business and 

government people. The SIM should accept these rules, attach them to 

the appropriate procedural logic and develop operating modules that 

implement the rules. This capability was demonstrated in Europe in 

198714. Rule based programming embedded in procedural logic is a 

feature of the ProKappa™ tool by Intellicorp, Inc. Intellicorp is testing a 

graphics based version of their rules system. 

Project Management. Business software development projects quickly 

outgrow the original team's capacity. The SIM must actively assist in 

defining separable small projects within a larger project. Either the data 

and processes must be clustered into groups that can be developed 

independent of other development projects or Object Classes must be so 

grouped. The more traditional CASE tools use affinity analysis and 

clustering algorithms15 to form these independent projects. 

The SIM should keep statistics concerning the completion of objects 

within the project so that the project can gage its status. Object 

completion criteria will change from project type to project type. For 

instance a data object such as an Entity Type need not have Attributes 

defined in a Strategic Planning project. This same Entity Type is 

required to have all attributes fully defined during the Business Area 

Analysis project. Some effort in this statistics area has started but most 

project status is maintained manually. 

Process Flow Diagrams. One the most powerful business analysis 

techniques traces the flow of work through an organization. The SIM 

should automate the diagrams and information gathered from this 

analysis to make it easier for the business to obtain process 

improvements and process automation. 

Security, access, and approval. Security and access are two business 

functions that are standard throughout business and industry. These 



www.manaraa.com

31 

functions should be provided with the development environment. The 

concept of electronic approvals as opposed to hard copy signature 

approval is a fairly new concept. Electronic approval of engineering 

drawings are legally binding, this type of security should be provided by 

the development and runtime environments. 

Data warehouse. Facilities for aggregating data as it is received into a 

corporate EIS or strategic planning data base are being individually 

programmed. Many of the functions required could be provided as 

DBMS resident procedure triggered as transactions are executed. 

Image processing. Today only the most technologically advanced 

enterprises are benefiting from image technology. The technology is not 

complex and should be a facility available in the SIM. 

Report generation. The formatting and production of reports should not 

be included in the development environment. Reports are an operating 

environment issue. 

Information technology platform independence. The development 

environment products should be independent of the target technical 

platform. Within the development environment business people should 

be able to develop and prototype their business processes. The prototype 

must be interactively available to the team so that changes are 

immediately tested and approved. 

This platform independence is partially delivered by some I-CASE 

vendors whose encyclopedias can be transported to a number of 

production environment and processed into executable systems on each 

environment. The SIM should include 80 percent or more of the 

commercially available production environments. 

4.1.2 OPERATING FUNCTIONS 

Most CASE tools provide some management of the models in their 

repository and some management of the generated source code. 



www.manaraa.com

32 

Production system version control, deployment, and installation of 

production versions are largely left to the information systems 

operations organization. The functions are accounting and clerical in 

nature, amenable to automation. 

Logical and physical resources. Information systems are designed 

around logical resources that must be related to physical resources at 

implementation time. The data in the logical data base must be 

contained on disks in a disk drive. One CASE tool in use today provides 

a deployment tool in which the logical resource is displayed in a column 

and the operator provides the identification (Names) if the physical 

resources in a corresponding column. The ability to deploy business 

systems into different physical resources is essential. 

Version control. Large enterprises require significant time to deploy 

versions of production software to all of their people. SIM must supply 

administrative software that controls versions and deployment of them. 

System deployment. With the proliferation of intelligent workstations 

the deployment of software is a logistics challenge. Several systems by 

which software can be deployed over the enterprise network are being 

used today. One vendor16 deploys client software to the server. A server 

procedure updates clients as they use the server. 

Report generation and management. There are three functions needed 

in the operating system. User design and specification of the reports 

should be interactive. Users should be able to see the results of their 

design on a graphical user interface so that there are no surprises. 

SIM software should optimize report generation to reduce the time 

required to process long reports. 

Management of report generation functions should include access to the 

report generation facility, approval of reports before production, and 

production scheduling with respect to periodicity and physical 



www.manaraa.com

33 

resources. The scheduling function should include resource contention 

procedures. 

Ad-hoc queries. The production system should include a powerful 

graphical based ad-hoc query facility. 

4.2 81M architectures 

The detailed architectures for deploying a SIM are already in place in the 

cited CASE tools and others becoming available to commerce and industry. 

Unifying these into an overall structure and rationalizing the generated 

systems to the operating and telecommunications systems in use is the major 

undertaking. The rationalization can be made using objects that interface 

generated systems to the target systems. 

4.2.1 DEVELOPMENT ARCHITECTURES 

Object 

Manager. 

Assembling 

the best of 

current 

CASE and 

software 

engineering 

technology 

calls for 

using 

Object IIGntJQer 

Human Intertac. Generator 

Ptoceduftll Logic Generator 

recllnlcol Interlace Generator 

Macro structure of development environment 

Objects as building blocks. These must be intelligently and graphically 

managed. The Object Manager provides the business user-developer 

with two primary functions. The first is to manage the library of objects 

to make them easily available to the development team with the goal of 

assisting rapid, efficient development. The second is to permit easy 

addition and replacement of objects, that is to keep the library full of 



www.manaraa.com

34 

objects that relate to current business operations. These facilities extend 

the concept of the Object Management Group's Object Request Broker 

to include management in the development environment and library 

management. 

Human Interface Generator. All of the objects in the CUA (Common 

User Access) specification and all of the activities associated with them 

constitute a formidable design and programming challenge. The 

business-developer should have all of these elements at their command 

in a graphical design and implementation tool. 

Procedural Logic Generator. This set of graphical tools makes 

maximum use of graphical representation for generation of code. Where 

the logic cannot be inferred from the graphics the business-developer 

should not have to type in third or fourth generation language 

statements. 

Rule System Generator. This set of tools should also be based on using 

intelligent graphics for code generation. Decision trees, logic matrices 

and formalized if-then~lse statements can all be reduced to code. 

Technical Interface Generator. In the developers architecture this 

function is to emulate the production system technical platform so that 

the business-developer is in an interactive prototype environment 

throughout the development process. This facility should ensure that at 

each step in the development the developers can test functions that are 

complete. If they test a function that has not been completed the 

Technical Interface Generator must return the developer to the 

application ready for the next operation. The whole development 

environment must respond such that development can proceed without 

interruption. 

Business System Repository. All development should be based on 

constructing a model of the business processes, rules, and data in a 

repository. The repository should have advanced facility to coordinate 



www.manaraa.com

35 

models of several development teams and to manage different versions 

of each model. Repository based development builds into the generated 

systems the ability to easily change the system by modifying the 

repository model. 

Object Library. The objects used in development are data structures in 

a file. The development environment keeps the objects for ease of 

developer use, 

Platform Library. This is a library of objects that emulate the target 

platform in the development environment. They support prototyping in a 

virtual production environment. 

4.2.2 DEPLOYMENT ARCHITECTURES 

SIM generated systems should be deployable to any number of technical 

environments. The deployment system provides this facility and the objects 

that make it possible. The mechanism for tailoring a SIM application to a 

particular platform is one of associating all of the application resource 

requirements to the platform resources. If the platform user interface is X

Windows, then the application is given the X-Windows object library. 

Appllcotlon ~rtItIoner 

Vetalon Control 

... ouree Mt:Inogel 

8w/ne" system 
Re~ltory 

Object Ubrarv 

Macro structure of deployment environment 

Application 

partitioner . 

Platform 

transparency is 

attained by the 

application 

partitioner. 

During 

development the 

logical resources need by the Business System are logically named. On 

installation these logical names are associated with physical resources using 

the Resources Manager. The Application Partitioner then partitions the 



www.manaraa.com

36 

Business System among the physical resources. For instance, if the objective 

of partitioning were to minimize the traffic on a network the partition may 

place all data base access software on data base servers and all application 

procedural logic on client machines. 

Version control. The version control software will have to provide version 

control of the production system, modules in test, the production model, 

models in test, and reusable objects. This is a sophisticated set of services 

that must allow for merging models and management of shared objects. This 

facility is present in many Integrated CASE tools today17. 

Resource manager. The resource manager maintains an inventory of the 

hardware and system software resources available to the Business Systems. 

This inventory is associated with the logical resources needed by the 

Business Systems. The Resource System manages the Platform Library which 

contains all of the objects needed to interface the Business Systems to the 

platform. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Information Week, June 22, 1992, page 16 

SUN MicroSystems Inc. quoted in JAMES MARTIN Insight, Inc. 
'Object Oriented Methodology Concepts 1992 

Capers Jones, !lI.ppfiU{ Software Measurement, McGraw-Hill 1991 

Frederick P. Brooks, Jr, Mytnicai Man Montn, Addison-Wesley Publishing 
Co. 1975 

For an example of a CASE tool that supports intelligent subsetting see 
the ADWTM by Knowledgeware, Inc. 

For an example of an Integrated CASE tool of this capability see the 
IE pM byTexas Instruments, Inc. 

See the ProKappa™ tool by Intellicorp, Inc. 

See the ElIipse™, from Cooperative Solutions, Inc., system management 
facilities. 

ESPRIT Project 928:RUBRIC-Six Monthly Report February 1987 

Peter G. W. Keen, Sli.aping tli.e !future, Harvard Buiness Review Press 
1992 



www.manaraa.com

11 

12 

13 

14 

15 

16 

17 

37 

See Ellipse™ by Cooperative Solutions, Inc. 

See Intellicorp, Inc. Object Management Tool development. 

For definitions of these diagrams see James Martin and Carma McClure, 
'Diagramming 'Tecnniques for JIlnalysts ana Programmers, Prentice-Hall, Inc. 
1985 

See ESPRIT Project 928:RUBRIC-Six Monthly Report February 1987 

See IEpM by Texas Instruments, Inc. or ADWTM by Knowledgeware, 
Inc. 

See Ellipse™ by Cooperative Solutions, Inc. 

See Texas Instruments Inc., Knowledgeware Inc., or the Bachman tool 
sets. 



www.manaraa.com

The Challenge Of Managing And Developing A Very Large And Dynamic 

Management Information System 

I. INTRODUCTION 

Dr. Palmer W. Smith1 
BDM International, Inc. 

1900 Founders Drive 
Kettering, Ohio 45420 USA 

General Bernard Randolph once said, according to Alton Marsh writing in 

Government Executive [1], that he retired as Commander of the Air Force Systems 

Command without ever completing a software project on time. His reference was to 

embedded systems. But fraiIldy, there is little evidence to suggest that anyone, or a very 

fortunate few, can say they have completed a software development project of any real 

size or kind on schedule and within COSL In her presentation at the National CASECON in 

1989 [2], Lois Zells reported that she found estimates for Management Information 

Systems (MIS) development are commonly off by 400 to 1000 percent before a detailed 

analysis is completed. In addition, her extensive research showed an average 50 percent 

error in cost estimates, even after a detailed design is completed. No wonder quality, 

costs, schedule, Usability, meeting user requirements, etc., are of continuing constant 

concern when developing a MIS. 

BDM International, Inc. (BDM), in its eighth year of a ten year, $240 million 

Logistics MIS development program for the Air Force, has experienced the full range of 

challenges associated with these concerns and responded with implementing new 

technology into a "back to basics" solid and disciplined management approach. This 

paper discusses the problems, challenges, lessons learned and actions taken to turn a very 

large logistics system MIS development into a highly successful program with proven 

1 Many people have 1ived IIuouP the cha1len .. ond "ccilcmemt" of buiJdingond continuing to 
build the Air Foree RequiJanem" Oata BUlk (ROB). Mony people COIItribuled ideu, wOJlted at 
ironi:ns out problems, tuning COIIcepIa, and iDtepatiDg the appmocbea diIcuued here. Tbia auth ... 
h.. .imply the privilege of doc:umenw,g othen' ideal, hard work and effo,". Special 
acknowledgment iI given to Dona1d E. Huter, BOM ROB Program Manager and Milk Filteau, 
fmmedy of BOM. for the visiOll to pion and imp1ememt the COIIcepIa in thiI paper. Evem DOW, with 
two yean to go, the ehallcmgeo are ever prae:nl and tl\c managememt intalle. 



www.manaraa.com

40 

results, high quality software, on schedule and on (X' under cost in a ftnn ftxed price 

incentive fee environment. 

ll. BACKGROUND 

In 1984, BOM began to build one of the major components of the Air Force (AF) 

Logistics Modernization System (LMS), the Requirements Data Bank (ROB). For 

development purposes, the AF had broken its total logistics process into three major 

components and several minor components in order to completely modernize its ability to 

support and sustain AF weapon systems and their associated infmstructure into the 21st 

Century. The LMS was a well thought out and planned $1.2 billion effort. the largest and 

most comprehensive military logistics management infonnation system development 

project ever undertaken. The reasons for developing the LMS by components which were 

functionally and data integrated, but not physically integrated, is obvious to anyone who 

has ever had to tackle even a moderate LMS development project. 

The purpose of the ROB is to automate and integrate the Air Force logistics process 

to forecast, budget, execute, and manage procurement and repair requirements for material 

to support all AF weapon systems, equipment, and other major end items. The ROB 

replaced 18 existing major logistics systems, is expected to have a 680+ gigabyte 

PRODUCllON HARDWARE 

IBM COMPAnBlE CENTRAL PROCESSORS 

CURRENT: AMDAHL 5810· 200E (IBM 30lI0 SERIES EQUIVALENT) 
DUAL PROCESSOR 
MIPS· 33 

FUTURE: AMDAHL 5890 • 400E (IBM 3090 SERIES EQUIY ALENT) 
TAl PROCESSOR 
MIPS· eo 

PRODUCllON SOFlWARE ENVIRONMENT I 
OPERAnNG SYSTEM: IBM 1otYS/XA _ MYSIESA 

DATABASE MANAGEMENT SYSTEM: DATACOM DB RElEASE 8.0 WITH SOL FEATURES 

COMMUNICATIONS MONITOR: IBM CICS 

COMMUNICATIONS ACCESS METHOD: YTAM 

COMMUNICATIONS NETWORK ARCHITECTURE: IBM SNA 

Figure 1. RDB Production Hardware & Software Environment 



www.manaraa.com

41 

relational data base with over 26,000 data elements, over 4.2 million lines of code, over 

1500 screens and reports, and about 16,000 on line users spread across the nation, when 

fully implemented in October 1994. It is being developed with the most comprehensive 

and complete OOD-STD-7935A documentation ever. It currently has over 500,000 pages, 

and growing, of documentation under configuration management. Figure 1 gives the RDB 

production hardware and software environment 

With only half of the system implemented in production, the RDB already has 

proven its value during the recent Desert Shield and Desert Storm. And it has been chosen 

as the basic platform and data base for the Requirements functionality of the Department 

of Defense (DOD) Logistics Corporate Information Management (CIM) initiative by the 

Joint Logistics Systems Center (JLSC). 

m. DYNAMIC CHANGE AND GROWTH 

During the first three years of the RDB program, a dynamic environment negated 

the ability to truly baseline system requirements. The initial requirements documentation 

consisted of over 3,700 pages with an estimated system size of 800,000 lines of code in 

1984. A distributed architecture was planned for both processing and data storage. Three 

years later, the requirements documentation consisted of over 13,700 pages with an 

estimated system size of about 4,200,000 lines of code. During this time over 1 ;1.57 

Baseline Change Requests (BCRs) were received and the architecture redesigned for 

centralized processing against a large centralized relational data base. 

The BDM management team and the client were not ready for this dynamic 

environment which produced many initial management and development concerns as 

shown in Figure 2. Most, if not all, of the normal problems experienced on any large MIS 

project were present. along with cost increases and schedule slippage. In addition, the AF 

requested that the Cost-Plus-Fixed-Fee contract be converted to a Firm Fixed Price 

contract for the remaining seven years since is was agreed that requirements were much 

better defined. It was difficult to envision providing a customer a fmn estimate for the 

remaining 3,200,000 lines of code seven years in advance. Yet, it was a requirement. 

During this three year period many lessons were learned and relearned and concrete 

actions taken to gain and maintain control of requirements, design, quality, cost and 

schedule, and customer expectations. Part of the solution involved the introduction of new 



www.manaraa.com

42 

Computer-Aided Software Engineering (CASE) technology, but this was not the real key. 

The center and focus of the solution was the implementation of a strict management 

disciplined environment within which the CASE technology was embedded and which 

was coordinated with the customer, i.e., going back to basics. 

IV. LESSONS LEARNED AND ACTIONS TAKEN 

The lessons learned and the management and development actions taken to 

transform this effort into a success are given in Figure 3. These are discussed in more 

detail in the following paragraphs in the form of the BDM's strategy and tactics evolved 

over time to face and solve the problems. In addition, because of the anticipated size and 

consideration of the thousands of AF staff who would be impacted by the RDB, an 

evolutionary design process and phased implementation were developed (Figure 4). This 

was done with a better understanding of the total impact on the customer's culture, the 

complex user/machine system which would require significant "change" management, and 

the critical need to manage customer expectations over the life of system development and 

implementation. 

A. Major Considerations in Developing The BDM Strategy 

In developing a strategy it is important to realize that the quality and cost 

management of an information system is determined by four factors. The first is user 

perceptions of requirements. This major difficulty encountered in costing and developing 

large systems is the "I'll know it when I see it" phenomenon. Another way to state this 

phenomenon is: "I don't know for sure what 1 want, but I want you to develop something. 

As you do I'll tell you whether or not it is what 1 want and whether I want you to change 

it" A major research project of 116 organizations found the major cause of poor estimates 

of cost and schedule was just this problem, changing user requirements [3] Figure 5 

demonstrates the balance required if reliable estimates are to be achievable. A static 

engineering environment may provide a high probability of meeting cost and schedule, but 

guarantees the user will not be satisfied with the result On the other hand, a dynamic 

environment which someday may satisfy the user will guarantee a cost overrun and 

schedule slippage. A balance is to establish a product baseline upon which reasonable 

estimates can be made with allowances for limited change proposals. The battle has to be 

fought here. Software quality and costs can only be dermed in terms of an established 

baseline. 



www.manaraa.com

- REQUIREMENTS CREEP 

_ POORLY DERNED REQUIREMENTS 

_ LACK OF DISCIPLINE 

_ CONTRACTOR 
_ CUSTOMER 

_ TEAMS TOO LARGE 

_ STAFF MIX INADEQUATE 

_ INADEQUATE STANDARDS 

_ INADEQUATE CONFIGURATION MANAGEMENT 

_ NO PROCESS IMPROVEMENT PLAN 

Figure 2. Initial Management and Development Concerns 

• CUT STAFF FROM 280 TO 150 AND IMPROVED QUAUTV 
MIX (TOTAL DEGREED STAFF WITH 50% MASTERS OR 
HIGHER) 

• RESIZED TEAMS FROM 20 • 30 TO 10· 12 MEMBERS 

• ORGANIZED TEAMS ALONG PRODUCT UNES 

• WROTE AND IMPLEMENTED CM, QA, PROGRAMMING, 
JCL DOCUMENTATION STANDARDS· APPROVED BY 
CUSTOMER 

• IMPLEMENTED INTEGRATED CASE ENVIRONMENT 
WITHIN A STRONG MANAGEMENT DISCIPUNE 

• CUSTOMER (WITH BDM HELP) PUT CONTROLS ON 
BASEUNE CHANGE REQUESt PROCESS TO MINIMIZE 
REQUIREMENTS CREEP 

-INTRODUCED AND AUTOMATED THE SOFTWARE 
BLUEPRINT PROCESS 

• IMPLEMENTED A STRONG PROGRAM CONTROL PROCESS 
BASED UPON PRODUCT DEVELOPMENT TEMPLATES AND 
SOFTWARE METRICS, FULLY INTEGRATED WITH THE 
FINANCIAL SYSTEM 

• IMPLEMENTED PATHOLOGY AND PARETO ANALYSIS 
OF SOFTWARE ERRORS WITHIN A TOTAL QUAUTY 
MANAGEMENT PROGRAM FOR PROCESS IMPROVEMENT 

Figure 3. Lessons Learned and Concrete Actions to Improve 
Management and Total Development Process 

43 



www.manaraa.com

44 

nElIESOI.OICI! 
_TOOUI 

SYSTEII MOILIII 

,,·,U~) 

IWIfl'ElIoUICE 
&""1'I1CAI. 
CHANQES 

• COMPLEX USEMlACIiNE SYSTEM REQUlIiNG ·CHANGF' MANAGEMENT 
• RDB IIPACTING HOW WORK IS DONE 
• PEOPlE AND SCHEDULING CONSIDERATIONS CRmcAL 

Figure 4. IDB Requires An Evolutionary 
Design Process And Implementation 

ADHERENCE TO 
RESTRICTIYE 

SPEClFlCATlONS 
vs 

RESPONSIVENESS TO 
EVOL YING USER 
REQUIREMENTS 

BOFTWARE QUALITY CAN ONLY BE DEFINED IN TERMS OF AN ESTABlISHED BASEUNE. 
THE BATTLE MUST BE R)UGHT HERE. 

Figure 5. Users Have Great Difficulty 
Articulating Requirements 



www.manaraa.com

45 

Complexity, the second major factor affecting cost and quality is an error present in 

all estimates (Figure 6). The system always seems simpler than it is in reality. Just throw 

some lines of code together and that is it! Information systems are among the most 

complex artifacts built by man. A failure to recognize this often results in poor resource 

allocation due to the serious error of misjudging complexity. An F-15 Aircraft is 75,000 

parts flying in close formation with one pilot, a complex machine and environment. But a 

very large MIS like the RDB, with millions of lines of code, a 680 gigabyte relational data 

base, and hundreds of interfaces working in close formation and the potential of 16,000 

pilots on-line all over the country. A complexity which, if ignored, guarantees many 

future long term problems, difficulty in accomplishing the purpose of the MIS, the wrong 

kind of visibility, and an unnecessary expenditure of scarce resources. 

The third factor, the economics of error correction, dominates software 

development quality and costing (Figure 7). The rush to meet schedules and come in on or 

under budget is prevalent today. Its symptoms are poor requirements documentation and 

analysis, sketchy or missing design documents, and plenty of code with plenty of errors 

that need fIXing after the fact A planned strategy aimed at reducing high cost errors in 

analysis and design is mandatory in order to provide a fighting chance of meeting some 

cost and schedule estimate. The key is a disciplined management and technical design 

environment with embedded automated CASE tools. Here the team player and conformist 

are valuable resources. 

Politics is the fourth factor (Figure 8). Information systems have the potential to 

alter the balance of power in organizations. Building an MIS must be regarded as more of 

a political act than a technology act and managed in a flexible, evolutionary manner. The 

failure to recognize this fact has resulted in an MIS which is not used or is canceled during 

development 

Another major consideration in developing a strategy is a software engineering 

process based upon the client's Concept of Operations. The BD M strategy focuses on 

providing the client visibility that senior management's objectives are being met, how 

these objectives will be supported, what the user will see, and how BDM's approach will 

limit risk (Figure 9). 

The product-oriented environment allows development teams to stay with a 

subsystem from analysis until independent system test began. Some continue through the 



www.manaraa.com

46 

F-15 FIGHTER AIRCRAFT RDB INFORMA 770N 
SYSTEM 

4,aHI,OIIII /JNES OF CODE 
n IIIAJOR SUBSYSTEMS REQUIRING INTEGRATION 

IIIItJ GIGABYTE RELATIONAL MTA BASE 
75,000 PARTS OVER _INTERFACES WITH EXTElWAL SYSrEMS 

1 PILOT OVER 'I,DIIO MOTS ON UNE DlBTIIBII1ED ACROSS THE UB.A. 

I SUFFICIENT RESOURCES MUST BE ALLOCATED TO DO THE JOB I 

Figure 6. Infonnation Systems Are Among 
The Most Complex Anifacts Built By Man 

SYSTEM LIFE CYCLE PHASE 

THE 80M SmATEGY IS AIMED AT REDUCING 
HIGH COST ERRORS IN ANAlYSIS AND DESIGN 

Figure 7. Software Development Is Dominated 
By The Economics Of Error Correction 



www.manaraa.com

CHANGING POLICIES AND REQUIREMENTS > 
1:========:::;--------, I CORE A/fCHfTECTURE I 

I PRODUCT RELEASE 1 I 
I PRODUCT RELEASE 2 I 

ADVANCING TECHNOLOGY > 1...----__ -----, 

':':"':':::':'::=::::::;:::::':::::':':"::':':':':': .•.•.•.•• 

EVOLUTIONARY DEVELOPMENT CAN REDUCE RISKS 

Figure 8. Building An MS Is A Political Act And 
Should Be Managed Accordingly 

tr=',t &:pW __ 

What Are Senior Management'a ObJective.? 

00 
00 
00 

IHOW Do W. Support Tho .. ObJadlv •• ? I 

What Will The U .... See? ] 

How Do W. Limit Risk? 

Figure 9. The Software Engineering Process 
Is Based On The Client's 
Concept Of Operations 

47 



www.manaraa.com

48 

client's Independent Verification and Validation (IV&V) testing to fix any errors found in 

the design or coding. This allows a team to retain functional, design, and system expertise 

in addition to the satisfaction of seeing their part of the product through to completion. 

The overall result is better morale, higher quality and productivity, improved processes, 

and reduced life cycle cost 

In addition, under the product-oriented management concept, a separate architecture 

team has responsibility for system integration issues, system testing, and data base design, 

configuration management, and documentation control This forces communications 

between the product teams since each team has to work: with all three functional areas of 

the architecture team. The director of the architecture team also chairs the Configuration 

Control Board (CCB). 

A separate program control support team provides monitoring of schedules and 

costs, develops all PERT/cpM networks for each product with the product manager, 

develops and maintains software metrics based upon data provided by the product teams, 

and conducts independent cost and variance analysis. Additional communication and 

oversight is provided by the conduct of a weekly Program Management Status Review 

(PMSR), when each product manager presents the status of his/her product in the presence 

of other peers and representatives from all other organizational components. 

It is important to emphasize that the implementation of CASE tools does not 

provide higher productivity or even better quality unless embedded within a strict 

management discipline. Productivity tools are not a substitute for good engineering 

practice or management discipline. 

B. The Tactics 

BDM's tactics are used to implement the BDM strategy and are focused on 

software product quality. Every facet of the software development process such as user 

training, software engineering, quality assurance, program planning and control, product 

testing, configuration management, project organization, and BDM's Software 

Productivity Enhancement Center (SPEC)TM are focused on the concept of providing the 

Requisite Quality and Quantity on Time for Controlled Costs (R02TC2) for a product 

Success is dependent upon clear articulation of tactics and strong management support. 

Each team player, regardless of their area of concern, must understand the tactics and 



www.manaraa.com

know that management will be involved. The following paragraphs discuss components 

of the tactics. 

C. The Strategy 

Considering the above, BOM's strategy, developed out of the lessons learned, has 

three key drivers: staffing policy, productivity tools, and management discipline 

49 

(Figure lO). As shown in Figure 3, BOM had about 280 staff on the ROB program very 

early in its life cycle. This staff was reduced to about 150 near the end of the fust three 

years. This was the result of changing the staffmg policy to move towards the BOM 

normal professional staff mix of 50 percent with advanced degrees and providing the best 

tools available. The result - higher productivity than with the 280 staff members and 

higher quality software products. Immersion of the quality staff and new techoology 

within a strict management discipline and having a product-oriented management structure 

completed the strategy. 

The project organization is based on the concept of "checks and balances" 

(Figure 11). The organization concept involves responsibilities with a system focus, such 

as systems integration; responsibilities with a user focus, such as system test; and 

responsibilities with a product focus, such as each Computer Program Configuration Item 

(CPCI) team director focused on product development 

The Quality Assurance (QA) assessment approach is proactive. QA influences all 

aspects of development through supporting the planning and building in of quality and the 

planning and performing of quality evaluation (Figure 12). Evaluation of products and 

requirements, as well as methodologies, provides key feedback for consideration in 

process improvement 

Program Control, which is responsible for the scheduling and cost driver portion of 

the strategy, is also based on a concept of checks and balances (Figure 13). The 

development of a Work Breakdown Structure (WBS) based upon contract requirements 

and mapped to process descriptions within the requirements documentation supports the 

development of a detailed product plan for each team. This effort is conducted by the 

Program Control team. The product team uses a Function Point costing model to evaluate 

and check cost estimates, the ROB master schedule to determine product beginning and 

end development time, and a standard product schedule template for developing 



www.manaraa.com

50 

Improve 
Quality and 
Productivity 

Productivity Tools are not a SUbstitute for 
Good EngifUHH'ing Practice or Management Discipline 

Figure 10. Staffmg Policy. Productivity Tools 
And Management Discipline Are The 
Key Drivers Of The lDM Strategy 

IIOI'lWAIIE 
PllOOUC'IIYI1'Y 
_BIIeIT J------1 

CENTER 

Figure 11. The Project Organization is Based on the 
Concept of "Checks and Balances" 



www.manaraa.com

QA INFLUENCES ALL ASPECTS OF DEVELOPMENT 

- I - I 
....-
Doco ... " 

~ a:.:.. 

I-eoot-
1--T~ --Cl 

Cl 
CJ 
Cl 
c::::::J 

I 

Figure 12. The QA Assessment 
Approach Is Proactive 

o,erw 

~ -----
~ ~ --?- ~ 

..... coa 

~ - ~ 
T-'_ -- ....-.. 

-. --
~ ~ 

I .. _- I"~ .. - -:::-a.:: I _v_ 
.. - .. ---- ~ ~ 

Fntqwnt "'tMw of ",.".,. 
Ta" AdVllfltaga of ttt. Hawthom. Elfeat 

DfI -"" gH 
lVaVToot_ 

II1II T_I 110_ ---,.,.,.. .. 
mioDeD c.."" 

I 
Figure 13. Program Control Is Based 

On The Concept Of "Checks And Balances" 

51 



www.manaraa.com

52 

PERT/cpM activities and entering durations of activities to contribute to the detailed 

product plan. This plan consists of baselined software metrics controlled by the program 

control team and updated by data supplied weeldy by the product team and baselined 

earned value charts controlled by the program control team and updated by a combination 

of product team progress reports and hourly costs data from integration with the corporate 

cost accounting system. 

Oming product development, the product teams are responsible for all 

documentation deliverables to configuration management and schedule and performance 

status reporting to the program control group. A joint weeldy review of all metrics focuses 

the attention of each product team on the total project After system tests and IV & V tests, 

error pathology analyses supported by Fishbone Analysis identifies areas within the 

development process where significant errors are occurring, providing input for process 

improvement Tracking and analysis of software errors found after the software is in 

production (implemented) further supports process improvement related to both the 

software testing and development process. 

BDM's cost/schedule estimating approach was developed to support the fum fixed 

price bid for the final seven years of the RDB program development (Figure 14). Because 

of the history of cost estimating failures, considerable time was spent in developing a 

system based upon multiple checks for consistency and reason to minimize risk for 

estimating the over $150 million dollars remaining effort A function point model, the use 

of empirically derived productivity factors, and estimates from experienced product 

managers and teams used in an interactive process and then mapped to the activities of 

PERT/CPM activities has provided BDM with the information required for accurate 

planning and reasonable costing. The results have been very promising, but experience 

has shown that the management intensity and discipline must be continuous. 

BDM's SPEcm is built upon commercially available tools (Figure 15). The 

integration of key components provides connectivity to the mainframe development 

environment and access to the configured and standardized Data Element Dictionary 

(OED). Customized Excelerator™ supports the system analysis, design and BDM's 

Software Blueprint® development and production through full integration with Ventura 

Desktop Publisher. BDM's approach to software documentation saved $5 million in two 

years. 



www.manaraa.com

MUL TlPLE CHECKS FOR CONSISTENCY AND REASON ARE 
THE BASIS FOR THE PLANNING PROCESS 

Figure 14. BDM Cost/Schedule Estimating Approach 
is Designed to Minimize Risk 

80FTWARE PfIODUCTMT'L 
ENHAHCEIIEN1' CENTERU 

I __ 'VDAII I 

DB DESIGNER 6 VDAM SUPPORT 
DATA BASE DESIGN AND PROVIDE 
CONNECTlVITY TO THE IlAINFRAIE 

CODER ALLOWS THE EVALUATION 

53 

I IT~":' U I ElI~:'1OII W OF CONCEPTUAL DESIGN AL TERNATlVES 

I I 
1 _AlIEIL_ CD .1 

CUSTOIoIZED EXCELERATOA SUPPORTS 
THE SYSTEM ANALYSIS, DESIGN AND 
SOFTWARE BLUEPRlNTlNG PROCESS 

SOFlWAREBLUEPRINTS®, ADD 
DESIGN VISIBILITY AND 
REQUIREMENTS TRACEABLITY 

VENTURA AND THE DOCUMENTATION 
SUPPORT GROUP REDUCE 
DOCUMENTATION COSTS 

Figure 15. The Software Productivity Enhancement Center ~PEC) E> 
is Built Upon Commercially Available Tools 



www.manaraa.com

54 

The BDM Software Blueprint® is the most important output of the spECfM. It 

consists of a complete picture of the design (Figure 16). It maps from what is visible to 

the user to the underlying engineering detail required by the programmer. It also provides 

a rapid paper prototyping method for design walkthroughs by the product team and foc 

walkthroughs with the client Each screen or report segment is mapped completely to the 

lowest detail of the requirements documentation, ensuring the client user complete 

visibility of design to requirements. Another key component of the tactics is the 

development of high quality Unit Development Folders (UDFs), the building blocks of the 

detailed design. High quality UDFs mean low risk coding and maintenance code 

(Figure 17). 

A major discipline of the tactics is Configuration Management (CM). CM is the 

key to project discipline and is used to maintain product baseline control. The CM staff is 

the channel through which all correspondence and documentation move between the 

product teams and all other components, including the Client (Figure 18). 

gna 
E!ij1Ej -- ...-.. nIDI --

~ 
~1Ej ~ 
~1Ej 

iA --
---..... em. 

THE IILUEPRIHIlHG PROCESS MAPS FROM WHAT 18 \/BIlLE 
TO THE WEll THE INlERLYING ENGINEERING DETAIL REQUIRED BY THE PROGIWoIIIER 

Figure 16. The Software Blueprint is the Most Important 
Output of the Software Productivity Enhancement Center 



www.manaraa.com

• DETAIL DEIIIGH • UNIT TEST REBUL. TIl DOCUMENI'ATlCN 
-_D __ • UNIT COIIPlET1ON CHECKUST 

-LCCIIC_ 
-__ LAYOUYiI 

I~I 
• ADDmCNAL DOCUMEHr8 

RELATED TO UNT 

-DATAVI_ 
DEVELOPMENT AND 
IIiIIAlNTENAHCE 

• CODE DEYELOPMEHr WITH 
TEST PREPARATlCN 

- _ WALK'IIIIIOtGI ~ 

-lIIITlBT PUll 

-IIOUIICE I.IBTWG 

-JCL 

HIGH QUALITY UDF'. MEAN LOW RISK COOING 
AND IIAINTENANCE CODE 

Figure 11. Unit Development Folders Are The 
Building Blocks Of The Detailed Design 

--._CIIImIGL 
.uTa.....-.r 
olll'A'IIII ___ 

.~-
• ,."... .... A&DTa 

CONFIGURA TION MANAGEMENT IS 1HE KEY TO PROJECT DISCIPUNE 

Figure 18. Product Baseline Control Is Maintained 
Through Configuration Management 

55 



www.manaraa.com

56 

V. RESULTS 

The results from the BDM strategy and tactics to implement the strategy is very 

encouraging. The RDB program has received the Logistics Management Systems Center 

Commander's Award for Quality for 1991. Cost performance for the last four Option 

Years has been excellent (Figure 19). Validated error per thousand lines of code at user 

acceptance (results of the client's IV &V testing team) compare very favorably with 

industry norms (Figure 20). Measured maintenance actions for code that has been 

delivered to production and in use by the Client also compared very favorably with 

industry norms (Figure 21). Code quality is also supported by the use of only eight 

maintenance programmers with assistance from three data base staff to maintain over 2.5 

million lines of code in production, with over 1,000 screens and reports. The current 

maintenance staff has maintained about the same backlog level and conducted system 

enhancements even in the face of increasing users and screens and reports in the field 

10Pn0N YEAR .. 
"OF 
~ 

TOTAL 111% 
( .. a.UDES SUSTAINING 
ENGINEERING) 

lopnON YEAR 5 

TOTAL 99.1% 
( .. a.UDES SUSTAINING 
ENGINEERING) 

lopnON YEAR 6 

TOTAL 
( .. a.UDES SUSTAINING 

97.6% 
ENGINEERING) 

I OpnON YEAR 7* 

EslimaltJd • CUmHI/Iy 85" CcmplelB 100% 

Figure 19. Cost Performance Results 
For The Last Four Option Years 

Under FIJlD Fixed Price Environment 

"OF 
EsnilATED 

99.S% 

89.4% 

93.2% 

94% 



www.manaraa.com

,. 

•• 

8' 

I 

Validated Development Errors per Thousand Lines 
of Code (KLOC) at User Acceptance 

~RADC 1172 ·1181 13.7 

--.& -_ ... 
¥ Q 

TUM --
-- --

C ...... YI •• .-,........ Dolo 

.6.-- -1iIuHIpIo
<> .... -

'H 

SPQR/2O 5.0 

• __ ~.a 

-b'" -A"---I. 
SPOMO. 
CHECKPOINT 3 ... 

I t --- -... E~::- ~ M¥'" ~ l) ...... . . -- -.-

Figure 20. BDM Error Rates Compare Favorably With Industry Nonns 

IIIIlntenllnc:e Actions per Thou .. nd Unn of Code (KLOC) during the 
Fir.- Twelve Montlla .fter U .... Accepgnc:e 

- - - - - - - - - - - --::USA:=:-:4.~44:------I 

"""ANI. 
------------------~ 

• • I --
• _ .. • -I .. -• • 

Figure 21. The In-service Reliability Of IDM Software 
Compares Favorably With Industry Nonns 

57 



www.manaraa.com

58 

§; 50 

I Ii ~~ 
I I i:MJ. i I I I -- _II _ .. 

• 

I( 
s 
4 

S 

nIlE c-- c:::J--
Figure 22. Maintenance Back Log Is Stable With Increasing Product 

Complexity And Light Maintenance Staff Wilh Assistance 
From 3 Database Staff For 25 Million Lines Of Code In Production 

(Figure 22). Figure 23 demonstrates the value of the Air Force ROB effort which is 

scheduled to be fully implemented in October 1994. Tremendous productivity gains have 

been derived from the use of the software components currently implemented. 

VI. SUMMARY 

Lessons learned and actions taken, as shown previously in Figure 3, as a result of 

BOM's strategy and implementing tactics have resulted in a successful solution to the 

early problems and challenges faced on this very large logistics management information 

system. The AF team's support and contributions to the total team effort have greatly 

enhanced the BOM actions. 



www.manaraa.com

IM!III OLD Sl'I7Df !I£SIIQHSE 1M' BPI BESJ!QH!!E lIME WPBOIIQfEl!!T _..--.t M_ .-. 11:, 
__ lor -f'-IoI 

......... ,.-..Ior M_ .1_ 111:1 ....... --_____ _111_ ,-. _1 --...... -' .. '-':1_ .1_ 111:1 10 _ 

_ ...--.... ,:I...... _1 _ .... _"...,. 
-..... .. -..--

VB. REFERENCES 

Figure 23. RDB Met Or Exceeded 
User Expectations 

[1] Marsh, Alton, "Pentagon Up Against a Software Wall," Government Executive, 

May, 1990,62 - 63. 

[2] ZeUs, Lois, "Project Management and CASE," Presentations of the National 

CASEC ON, New York City, New York, June 20 - 22,1989. 

59 

[3] Lederer, Albert L. and Jayesh Prasad, "The Information Systems Development Cost 

Estimating Conundrum," A Presentation at the National OSRA/TIMS meeting, October, 

1989. 



www.manaraa.com

The MERMAID Project 

AJC Cowderoy, J 0 Jenkins and A Poulymenakou 

School or Informatics, City University 

London, ECIV ODB 

United Kingdom 

1. INTRODUCTION 

The tendency for software development projects to be completed over schedule 

and over budget has been documented extensively [1,2]. Additionally many projects are 

completed within budgetary and schedule target only as a result of the customer 

agreeing to accept reduced functionality. 

A particular area of research of relevance to this phenomenon is software cost 

modelling. Many researchers have attempted to model the interrelationships of project 

cost parameters for instance Putnam [3]. These parameters are the Total Project Effort 

(in person time units). Elapsed time or schedule, T and the average staffmg level M 

throughout the project. In his classic book, The Mythical Man Month, Fred Brooks [4] 

exposes the fallacy that effort and schedule are freely interchangeable. All current cost 

models are produced on the assumption that there is very limited scope for schedule 

compression unless there is a corresponding reduction in delivered functionality. 

2. MERMAID 

The Metrication and Resource Modelling Aid (MERMAID) project, partially 

financed by the Commission of the European Communities (CEC) as Project 2046 began 

in October 1988 and its goals are as folows: 



www.manaraa.com

62 

• Improvement of understanding of the relationships between software 

development productivity and product and process metrics. 

• To facilitate the widespread technology transfer from the Consortium to 

the European Software industry. 

• To facilitate the widespread uptake of cost estimation techniques by the 

provision of prototype cost estimation tools. 

The applicability of the tools developed by the MERMAID consortium is 

considered to encompass both embedded systems and Management Information Systems. 

MERMAID has developed a family of methods for cost estimation. many of 

which have had tools implemented in the fIrst two prototypes. These prototypes are best 

considered as toolkits or workbenches. Figure 1 gives an architectural overview of these 

prototypes. 

The fIrst prototype was demonstrated in november 1990. It was developed on 

a SUN 3/6lJ Workstation using an objective oriented extension of the C language. 

Objective C. Two versions exist. one running under the Portable Common Tool 

Environment (PeTE) and the other is a UNIX implementation. The second prototype 

was demonstrated in November 1991. versions of which were developed on an IBM 

PS/2 running either WINDOWS [3] or OS/2 and Presentation Manager. A fIrst 

commercial version was demonstrated at the 14th International Conference on Software 

Engineering in May. 1992. 

3. MERMAID ESTIMA nON METHODS 

At the time of the start of the MERMAID project. October 1988. the commonly 

used approaches to cost estimation were as follows: 



www.manaraa.com

<:§nflguratlon 

GV 
Report Tools 

Definitions 

Current Attributes 

Historical Project 
Attributes 

Current Project 
Estimates 

Figure 1. Mermaid Architecture 

Anelogy-based 
Estimation 

( Resources ) 
Modeling 

(Risk Assessmen0 

Estimation Tools 

• Expert Judgement, ie informal guestimate of the resources required. 

63 

• Analogy, similar to the above but influenced by the identification of a 

similar completed project. similar to the one being planned. 

• Parametric Model, use of a cost estimation tool based on a number of 

existing models of the relationships between project cost parameters and 

cost drivers. Models on which tools were based included SLIM [3], 

COCOMO [5], and COMPMO [6]. 

Tools based on these models can be calibrated for a particular environment. 

However, research has shown that despite calibration, the accuracy of estimates 

produced by cost estimation tools is poor [7]. There are several contributing factors to 

this inaccuracy. these include the difficulty, if not impossibility, of estimating the size 

of the product to be developed as early in the lifecycle as the Requirement Analysis 

Phase. Additionally calibration depends on the existence of moderate quantities of past 

project data collected in a consistent manner. 



www.manaraa.com

64 

The MERMAID approach is based on the use of locally-based and user-defmed 

metrics. Furthermore wherever possible actual measures as against estimates are used 

as input to the statistical estimating facility. This has the advantage of ensuring 

consistency and accuracy. Today's tools based on parametric models normally require 

the project manager or estimator to input an estimate of the size of the software product 

to be developed. This is either expressed in Lines of Code (LOC) or in the form of a 

function-based metrics, Function Point Count. This latter metric was developed within 

IBM by Alan Albrecht [8] and purports to measure the size of an application in terms 

of the functionality to be delivered to the user. It has the advantage over LOC in that 

it can be measured as soon as an outline logical design of the application is available. 

It is the view of the MERMAID project that wherever possible estimates must be based 

on measures not other estimates. This is coupled with the development lifecycle model 

assumed by MERMAID, ie a project is then regarded as a series of milestones separated 

by phases. This view enables the estimator to model any organizations lifecycle. Care 

must be taken not to confuse this use of the term phase with its use in a particular 

lifecycle model. 

4. DEVELOPMENT PRODUCTIVITY ANALYSIS 

Bailey and Basili [9] suggested that it should be possible to develop a 

satisfactory estimation model for a given environment using a small number of 

independent product and process attributes as the dependent variables in a multi variable 

linear regression model. Such an approach differs from that found in the COCOMO [5] 

model where the nominal estimate derived from the standard estimation model is 

subjected to a multiplicative adjustment factor. This measures the combined influence 

of a number of cost or productivity drivers. Recent research [10] has suggested that 

many these cost drivers are not independent. 

An analysis by MERMAID [11] of a dataset from various commercial MIS 

environments using principal component analysis of 21 supposed productivity factors 

indicated that 7 principal components accounted for over 75% of the variability of the 



www.manaraa.com

65 

data and that no other component accounted for more than 5% of the variability. The 

main source of the belief that staff and environment characteristics are significant factors 

in determining development productivity is the importance placed on them in most of 

the published cost models. A note of caution against reading too much into these 

analyses must be sounded. Any retrospective validation using data from completed 

projects is fraught with methodological difficulties, not the least being the uncertainty 

over the accuracy of the measurements. Classical experimental design involving the 

monitoring of on-going projects is rarely possible in this domain. 

S. MERMAID AND ESPRIT 

The Commission of the European Communities (CEC) launched ESPRIT in 

1983 largely as a consequence of the realization in Europe that its Information 

Technology industry was becoming increasingly uncomparative particularly viz-a-viz 

Japan. ESPRIT projects cover both hardware and software technologies and address 

both factory and office automation. Both software engineering and artificial intelligence 

are primary focuses. MERMAID is one of a number of projects, some current and 

others which have been completed, which address aspects of software development, 

management and metrics. Two immediate predecessors of MERMAID in which some 

of ideas were developed were IMPW [12) and REQUEST [13). The former developed 

an integrated project management toolkit which included support for cost estimation and 

latter was concerned with modelling aspects of software reliability. 

ESPRIT has begun its third phase and today's projects have a clearer user 

requirement orientation than those in the frrst phase which were largely technology push 

projects. The change in emphasis followed early evaluations of the programma which 

showed a disappointing take-up of the research output by industry even in cases where 

industry itself was the prime mover behind the project. 



www.manaraa.com

66 

6. THE IMMEDIATE FUTURE 

The MERMAID consortium is putting the finishing touches to the specification 

of the tool functionality to be included in the Mark [2] prototype due for release late in 

1992. Considerable attention is been paid to developing risk assessment capability 

which conforms to the MERMAID philosophy. Such a risk assessment capability will 

require access to a knowledge base of pervious projects and measures of risk to project 

budget and schedule will be estimated using similar statistical and analogical techniques 

to those used for effort estimation. In addition, the inclusion of a facility to examine 

effort and schedule trade-off is planned. This will be based on the Kunomaa Resource 

(KURE) Model [14] which takes a thermodynamic view of the software development 

process. An alternative to this involves the use of a System Dynamics Model [15] 

Superior sensitivity superior sensitivity analysis capability can be provided in this way 

provided an adequate understanding of the relationships between schedule effort and 

manpower level is established for the development environment. A further pair of 

estimation methods for use when there is a shortage of data describing past projects will 

be provided; these are the Analogy-Based Estimation Method, suitable when there is 

between 4 and 10 projects and the Experience-Based Estimation Method for fewer than 

4. The final prototype will be available in late 1992. 

LIST OF REFERENCES 

1. De Marco T (1982), Controlling Software Projects, Yourdon Press, New York 

2. US Congress (1989), Bugs in the Program: Problems in Federal Government 

Computer Software Development and Regulation. Staff Study for the House of 

Representatives Committee on Science, Space and Technology. 

3. Putnam L H (1987), A general empirical solution to the macro software sizing 

and estimation problem IEEE Trans. Software Engineering SE-4 (4). 



www.manaraa.com

67 

4. Brooks F (1975), The Mythical Man Month, Addison-Wesley, London. 

5. Boehm, B W (1981), Software Engineering Economics, Prentice Hall, 

Englefield. Cliffs, N J. 

6. Conte S, Dunsmore H and Shen V Y, (1986), Software Engineering Metrics and 

Models, Benjamin-Cumimns, Menlo Park CA. 

7. Kemerer C F (1987), An Empirical Validation of Software Cost Estimation 

Models, Comm, ACM 30(5). 

8. Albrecht A J Measuring Application Development Productivity Proceedings Joint 

SHARE/GUIDE Symposium, October 1979, pp83-92. 

9. Bailey J W and Basili V (1981) A Meta model for software development 

resource expenditure. Proceedings of the 5th International Conference on 

Software Engineering, ppI07-1l6. 

10. Subramian G H and Breslawski S (1989) A case for dimensionality reduction 

in software development of effort estimates. TR 89-02 Computer and 

Information Science Department, Temple University, Philadelphia PA. 

11. Kitchenham B and Kirakowski J (1991), 2nd Analysis of Mermaid Data. 

Mermaid Project Deliverable D 3.3.B. 

12. Bosco M, Jenkins J and Verbruggen R (1987), Integrated Management Process 

Workbench (lMPW) Advance Papers, 1st International Workshop on CASE, 

Cambridge, Mass. 

13. Linkman S J (1990) Quantitative monitoring of software development by time 

based and intercheckpoint monitoring. Software Engineering Journal Vol. 5(1). 



www.manaraa.com

68 

14. Harry, C M and Jenkins J (1991) Mennaid Working Paper TCU-5-0-D-500/1. 

15. Bell G and Jenkins J (1991), Proceedings of the 7th International COCOMO 

Users Group Meeting, SEI, Pittsburgh. 



www.manaraa.com

SOFTWARE REUSE AND PRODUCTIVITY: AN EMPIRICAL VIEW 

A. INTRODUCI1ON 

Thomas P. Frazier 
Institute fa Defense Analyses 

1801 N. Beauregard Street 
Alexandria, Virginia 22311 USA 

Software reuse, by which we mean the reuse of existing software code or design, 

has gained a great deal of attention because it seems to offer a way to attain substantial 

increases in software development productivity. Under the reuse paradigm the software 

devel~r would select from libraries or repositories of software components and build his 

program "component-by~ponent" instead of via the traditional method of writing code 

"line-by-line." A component could be an existing standard mathematical or statistical 

routine, utilities related to operating systems, or even an entire program. Also, there are 

different levels or degrees of reuse. Some components can be reused verbatim while 

others must be modifted befae being incorporated into the new program. 

Reuse would seem to enhance labor productivity, by which we mean the amount 

of output (usually measured in lines of code) pet unit of labor effort (usually measured in 

hours or months) in both the development and maintenance phases of the software 

program life cycle. In the development phase, the practice of reuse would increase labor 

productivity because less new code needs to be written. Boehm and Papaccio [1] cite data 

from a firm that suggest for typical new business applications.. reusable Code accounts for 

as much as 60 percent of the total code count. In the maintenance phase reuse would 

increase software quality (measured in terms of defects) due to multiple testing and error 

removal opportunities. The smaller the number of errors, the lower the number of 

corrective maintenance actions incurred as a result of reuse [2]. 

There are costs to practicing reuse. The ability to capture the benefits of reuse 

depend to some degree on investment in the infrastructure needed to facilitate reuse. Kang 

and Levy [3] point out that invesunents are required to make organizational changes that 

promote reuse. Examples of these organizational changes are extensive training projects 

that emphasize programming conventions geared to reuse, and central support staffs that 

monitor development activities and make reusable components available. The authors 



www.manaraa.com

70 

argue that developing potentially reusable software is technically mere difficult and should 

cost more than software not developed f~ reuse. The additional costs are associated with 

incorporating flexibility to handle a variety of uses. The additional cost to develop 

reusable code have been estimated to range from 10 percent for software to be reused 

across an individual project to 50 percent for software to be reused across multiple 

projects [4]. 

There are also technical baniers to reuse that impose costs. The engineering 

problems of defining and establishing a reuse domain (a family of software projects 

having similar descriptions) [5], and building and populating reuse repositories [6] are but 

two of these technical barriers to reuse. 

While the theory of reuse and its impact on labor productivity is rather 

straightforward, there is little empirical evidence to either support or refute the idea that 

reuse should result in higher labor productivity. There is a great deal of literature on the 

technical aspects of software reuse (e.g., see [7]) and on software development labor 

productivity. (A good survey is found in [1]; more recent examples are [8] and [9].) . 

Unfortunately, there has been little empirical study of the direct impact of the practice of 

reuse on software development labor productivity. 

A recent study of reuse savings used data collected by the National Aeronautics 

and Space Administration (NASA)lUniversity of Maryland Software Engineering 

Laboratory (SEL) on twenty-five flight dynamics development software projects [10]. 

The study included a sample of 2,954 software modules (subroutines) written in 

FORTRAN. The modules were stratified a~ding to their origin: complete reuse 

without revision, reuse with slight revisions « 25% changes), reuse with major revision 

(~ 25% changes), and complete new development. The average productivity per module 

(measured in source line of code per tenth of development effort hour) were computed f~ 

each of the classes of modules. The complete reuse modules averaged 23 lines of code per 

tenth of hour. The slight revision modules averaged 1.8 lines of code per tenth of hour. 

The major revision modules averaged 1.4 lines of code per tenth of hour. Complete new 

develoJment modules averaged 1.1 lines of code per tenth of hour. 

One limitation (and strength) of the SEL data is that the data are focused on a 

rather small and well-dermed area, ground support software for unmanned spacecraft 



www.manaraa.com

71 

control,for a single customer. This narrow focus makes extrapolation to other 

application areas difficult. However, it makes an excellent domain environment in which 

to observe reuse, and it ensures some consistency in data collection and analysis. Selby's 

WOB: focuses on the module level versus the more aggregate project level. Would we 

observe the same results at the project level from other application areas, other languages, 

and with projects for a wide variety of customers? 

This paper attempts to answer this question by empirically testing the 

hypothesis that projects that made use of existing software components would take less 

labor effort per line of delivered code than projects not built from existing code. In 

addition, this study seeks to extend Selby's wert by modeling additional variables that 

influence software development productivity. Specifically, we test to see if verbatim 

reuse and modified reuse 'take less labor effort per line of delivered code than code 

developed fmn scratch. 

The next section describes the model used to test the hypothesis. The third 

section presents the data used in the model. The data are observations on large 

management information systems applications taken frem a sample of 90 Department of 

Defense (DoD) p-ojects. 

The fourth section presents the results. Verbatim reuse is found to have a 

significant impact on software development productivity. In our sample of projects, 

modified reuse does not have a significant impact on software development productivity. 

The fifth sectioo discusses the cost savings impIicatioos of the research results. 

B. MODEL 

A model was constructed and its parametecs estimated by regression analysis in 

order to test the hypothesis programs that made use of existing software components 

would take less lab<x' effort per line of delivered source code than programs not built from 

existing code. 

The model measures software development productivity as the total source lines 

of code produced (Q) divided by the total labor effort (L) expended to produce the code. 

Each program is generally a mix of new code (N), code reused from other sources after 



www.manaraa.com

72 

being modified (M), and code reused without modification or verbatim (V).1 We would 

expect verbatim reuse and modified reuse require less Iab<Y eff<rt per line of delivered code 

than new code developed from scratch. In addition, we would expect verbatim reuse to 

require less labor effort per line of code than modified reuse. A well specified model of 

software development productivity would also include factors that account for the 

complexity of the software product. the software development tools employed in the 

development environment and the vintage of the software [1]. Therefore, the labor 

productivity of a given program depends on six arguments: 

Q 
T = F (RH, Rj/' Ry' C, T. A). 

(1) 

where RN, RM, and Rv represent the percentage of the total code that was new, reused 

with modification, and reused verbatim respectively and C, T, and A represent those 

complexity, tool environment. and age faetas cited above. 

We cannot estimate Equation (1) directly, since the percentages of the code that 

are verbatim, modified. and new are collinear with each other. However, we can make use 

of the fact that these percentages sum to one and rewrite Equation (1) in terms of just the 

percentage of total code that is modified and the percentage of total code that is verbatim. 

This is shown in Equation (2) 

Q 
T = F [(1 - Rj/ - Ry)' Rj/' Ry• C, T, A], (2) 

Ordinary least square (OLS) can be used to estimate Equation (2). The OLS model is 

shown in Equation (3) 

Q T= ao + a1Rj/ + a2 Ry+ a 3C+ a~.r+ a~ +E, (3) 

where ao, at, a2' a3' a4' and as are the parameters to be estimated and E is the 

disturbance term that is assumed to be distributed independent normal, N( ( 2),). All other 

symbols retain their previous meanings. 

Selby's complete reuse without revision is equivalent to our verbatim reuse. 
Complete new development is our new development category. Reuse with slight 
revision «25% changes) and reuse with major revision (~25% changes) are 
equivalent to our modified reuse category since we make no distinction as to the 
degree of reuse. 



www.manaraa.com

73 

The productivity associated with the modifled code is inteqreted as ao + aI' the 

productivity associated with the verbatim code is interpreted as ao + a2' and the 

productivity associated with the new code is interpreted as ao. 
If the hypothesis is correct that verbatim reuse and modified reuse take less labor 

effort per line of delivered code than new code developed from saatch, we would expect 

the productivity associated with the verbatim reused code and the productivity of the 

modifled reused code to be significantly greater than the poductivity associated with the 

new code. In additioo we would expect the verbatim reuse productivity to be greater than 

the modifled reuse. The hypotheses are summarized in Table 1. 

Table 1. Productivity Hypotheses 

Hypothesis 
Modified reuse productivity is greateJ' 
than new code productivity 
Verbatim reuse productivity is greater 
than new code productivity 
Verbatim reuse poductivity is greater 
than modified code productivity 

Regression Coefficient 

al> ao 

Because the OLS model includes the explanatory variables C, T, A, in addition 

to the reuse variables, the ao tenn picks up influences from those additional explanatory 

variables. To account for these effects, the means of the additiooal variables [i.e., (a3 C + 

al + as A)] must be subtracted out of CXo before the productivities can be COOlputed. 

C. TIffiDATA 

The data used to estimate the model were taken from a stratified survey sample of 

90 Department of Defense (DoD) automated informatioo system (AIS) programs. These 

AIS programs perform genetal-purpose automatic data processing functions. They were 

developed by both in-house and contractor personnel, and they cover a time period from 

the early 19708 to the late 1980s [11]. 

Because there is no completely documented inventory of DoD AISs, the 

sampling strategy involved collecting data on software development projects that are 

consistent in age, function, and DoD component within the known DoD hardware 



www.manaraa.com

74 

inventory. The DoD computer hardware inventory is contained in the Automated 

Resources Management System maintained by the Defense Logistics Agency [12]. 

The survey contained information that could be used to construct the variables 

represented in Equation (3). Specifically, the survey data included the nlDDber of lines of 

source code, the number of lines of code reused, the eff<rt required to develop these lines 

of code, the software engineering tools used in the development environment, the age of 

code, and the COOlplexity of the code. Each of the variables are discussed below. 

Respondents to the survey were asked three questions about the number of 

delivered source lines of code (Q). The respondents were asked to estimate the total 

number of source lines of code (all code counts were measured in thousands of delivered 

source lines) for the program, the number of source lines of code reused from other 

sources after being modified, and the number of source lines of code reused without 

modifICation. New lines of code were defmed as the total number of source lines of code 

minus the sum of the number of source lines of code reused from other sources after being 

modified and the number of source lines of code reused verhatim. 

Because of the diffICulty in comparing lines of code across computer languages, 

only those COBOL projects were included in the sample for this study. The respondents 

were instructed to follow the code counting convention used in [131. Lines of code are 

defmed to include all program instructions aeated by program personnel and processed 

into machine code by some combination of preprocessors, compilers, and assemblers. It 

excludes comment cards and unmodified utility software, but it includes job control 

language, format statements, and data declarations. Instructions are defmed as lines of 

code or card images. It excludes DOll-delivered support software such as test drivers. 

However, if the support software were developed with the same care as delivered software, 

with their own reviews, test plans, documentation, etc., then they were counted. 

The lab<x' variable measures the person-months of effort required to complete the 

main software build. This is defined to include effort for detailed design, coding, 

integration, quality assurance, configuration management, publications, and management 

In order to account for exogenous trends in software development productivity 

growth [11) over time, a trend variable was constructed. The variable measures the age of 



www.manaraa.com

75 

the software since it was certified as fully operational. The variable is measured in terms 

of calendar months. 

Each respondent in the survey indicated the availability and usage of the software 

productivity tools and procedures (as desmbed in Table 27-7 of Reference [13]), plus 

several additional tools that were developed and employed subsequently. In order to ensure 

defmition consistency across all respondents, a glossary of terms concerning each of the 

tools was provided with the survey instrument. 

Boehm [13] developed a five-level classification scheme: very low, low, 

nominal, high, and very high. We used a modifJCatioo of Boehm' s classification scbeme. 

Those tools that were described as being low and very low were aggregated into a single 

category. The same grouping strategy was executed for those tools that Boehm labeled 

high and very high. Hence, we have three tool categories: low, nominal, and high. The 

tools and the groupings are summarized in Table 2.2 

Ratings 
Low 

Nominal 

High 

Table 2. Software Tools Rating Scale 

Tools 
Assembler, Chief Programmer Team, Configuration Management, 
Database Aids, Batch Debuggers, Programming Support, Tune-sharing 
Operating System, Performance Measurement and Analysis Tools 
HOL Compiler, Project and Data Entry Control Systems, Data 
Dictionaries, Interactive Debuggers, Source Code Formatters, Report 
Generators, Screen Generat.cn, Reusable Source and Object Code Ubrary 
System, Virtual Memory Operating System, Macro Assembler, Text 
Editor and Manager 
Cross Compiler, Conversion Aids, Database Design Aids, Data Base 
Management System (DBMS), Distributed Processing, Active 
Documentation Tools, Failure Analyses Tools, Famal Verification, 
Display Formatters, Code Generators, Application Generators, Integrated 
'COOlputer-Assisted Software Engineering Environments, Local Area 
Netw<rt, Program Design Language and Tools, Requirements 
Specification Language and Analyzer, Interactive Source Editor, 
Automated Veriftcation System, Expert Systems Applications to 
Software Engineering, Instruction Set Simulators, Regression Testing, 
Restructuring Tools and Test Coverage Analyzers 

2 This listing contains all the tools presented in Bobem's original work [13] plus 
additional tools that were developed later. 



www.manaraa.com

76 

In order to account for the impact that these tools might have on software 

productivity, a dummy variable was oonsttucted. If the program employed at least me of 

the tools the "high" category the dummy variable was coded as a 1; otherwise it was coded 

as a O. This variable is rep-esented as T in regression Equation (3). 

The complexity of the software program was measured by the respondents' 

answers to a question concerning the algorithms and logic design of the software. The 

question asked the respondents to check one of six descriptions of the software. The 

desaiplions were p-esented in descending ooier of complexity. If the respondents checked 

the description (deemed the most complicated) "Algmthms and logic design were created 

from scratch. Many complicated bardwareJsoftware interfaces had to be defined as design 

matured," a dummy variable was coded as 1. If the respondents cbedced any of the other 

five desaiptions, the dummy variable was coded as O. This variable became the measure 

of the complexity of the software code. 

Forty-nine of the original 90 projects in the survey met the requirement of being 

written in COBOL and contained data 00 all the variables detailed above. Twenty-nine of 

the projects employed DO reused code. Twenty projects reported reusing (eithec modifying 

or verbatim) existing code. Table 3 presents the size and proportion of new, modified 

reuse, and verbatim reuse of code for the 49 prqiects. The means and standard deviations 

of the projects in the sample are also presented. 

The average size of the 49 projects is 318 thousand source lines of code 

(KSLOC). The avecage size of the 29 projects not employing reuse is 239 KSLOC. The 

average size of the 20 projects employing reuse is 431 KSLOC. However, project size 

was found not to be significantly related to the incidence of reuse. 

The sample means and standard deviations for all the variables used in the model 

are presented in Table 4. 

D. RESULTS 

OLS was used to estimate Equation (3). The results are presented in Table 5. 

AIl the variables carry the expected signs. The modified code variable is clearly not 

statistically significant. A one-percent increase in the fraction of code that is reused 



www.manaraa.com

77 

Table 3. Percentage of Code by Origin by Project 
Project Size Percentlit' at: ~~ 

Identification 0Wf9 New Modified Verbatim 
Aool 1.00 0.00 0.00 
Aoo2 400 0.40 0.50 0.10 
AOO4 I 0.00 0.50 0.50 
Aoo7 58 0.00 0.62 0.38 
Aoo8 68 1.00 0.00 0.00 
AOIO 12 0.96 0.00 0.00 
AOll 1,200 1.00 0.04 0.00 
AOl2 500 1.00 0.00 0.00 
AOl4 20 1.00 0.00 0.00 
A018 45 0.33 0.00 0.00 
A020 3 1.00 0.67 0.00 
A021 75 1.00 0.00 0.00 
A027 500 1.00 0.00 0.00 
A027 500 1.00 0.00 0.00 
A028 250 1.00 0.00 0.00 
0001 147 1.00 0.00 0.00 
0002 1,098 1.00 0.00 0.00 
DOO4 1,500 1.00 0.00 0.00 
Foo2 22 1.00 0.00 0.00 
FOO4 60 1.00 0.00 0.00 
Foo5 50 1.00 0.00 0.00 
Foo6 1,784 0.44 0.56 0.00 
Foo7 100 0.00 0.10 0.90 
Foo8 115 1.00 0.00 0.00 
FOll 102 1.00 0.00 0.00 
FOl2 10 1.00 0.00 0.00 
FOl4 110 1.00 0.00 0.00 
F015 80 0.38 0.31 0.31 
FOl8 212 1.00 0.00 0.00 
F021 50 0.70 0.30 0.00 
F023 41 1.00 0.00 0.00 
F025 45 0.00 0.24 0.76 
F026 38 1.00 0.00 0.00 
F027 200 1.00 0.00 0.00 
F029 5 1.00 0.00 0.00 
F030 90 0.76 0.19 0.06 
F032 750 0.00 0.33 0.67 
F033 SO 1.00 0.00 0.00 
F034 387 0.18 0.19 0.63 
F035 20 0.25 0.45 0.30 
F036 4 1.00 0.00 0.00 
NOO4 900 0.17 0.08 0.75 
Noo8 250 1.00 0.00 0.00 
NOO9 IS 0.47 0.00 0.53 
NOlO 750 1.00 0.00 . 0.00 
NOll 700 0.56 0.00 0.44 
NOl2 25 0.84 0.16 0.00 
NOl3 2,000 0.98 0.01 0.00 
NOl5 108 1.00 0.00 0.00 
N016 500 1.00 0.00 0.00 
Mean 318 0.76 0.11 0.13 

Std. Deviation 478 0.36 0.19 0.25 



www.manaraa.com

78 

verbatim increases developer productivity by 1,075 source lines of code per month. An 

additional calendar month of age decreases developer productivity by four source lines of 

code per month. If the project employed at least one of the tools the "high" category, 

developer productivity increases by 539 sources lines of code per month. More 

complicated code (i.e., algorithms and logic design were created from scratch and 

complicated hardware/software interfaces bad to be defmed as design matured) deaeases 

developer pOOuctivity by 455 sources lines of code per month. 

Table 4. Sample Cbaracteristics: Means and Standard Deviations 

Variable Name 
Productivity 

Modified reused code 

Verbatim reused code 

Age 
Tools 
Complexity 

SX!!!bol Units 
Q Thousands of source 
L lines of code per 

person-mont 

RM Fraction of total 
project code 

Rv Fraction of total 
project code 

A Calendar months 
T locO 
C locO 

Table 5. OLS Estimates of Software 
Development Productivity 

Mean 
.991 

.107 

.129 

89 
.877 
.367 

Variable Coefficient SIaDdard Error 
Inten:ept 0.923 0.426 
Modified Code 0.038 0.776 
Verbatim Code 1.075 0.539 
Age -0.004 0.001 
Tools 0.539 0.378 
Complexity 

n=49 

-0.455 

2 
R =.27 

0.267 

SIaDdard 
Deviation 

.977 

.191 

.251 

69 
.331 
.487 

Adjusting the intercept term as described and using the regression reSUlts, we can 

compute the new, modified, and verbatim code productivities can be computed. The 



www.manaraa.com

79 

computed productivity and the productivities nonnalized to new code development are 

shown in Table 6. 

Table 6. Estimates of Software Development 
Productivity by Code Origin 

Productivity 
(KSLOCpet 

Origin of Code person-month) 
New Code 0.98 
Modified Code 1.02 
Verbatim Code 2.08 

Nonnalized 
1.00 
1.04 
2.12 

Modified reuse is estimated to generate productivity improvements of about 4 

percent over new development However, the regression coefficient of the modified reuse 

variable was not statistically signiflCaDt We concluded, at least for the sampled projects 

in this study, that there were no significant productivity improvements from partial reuse. 

This result contrasts with fmdings reported by Selby et al. in [10] that 

productivity improvements of 45 petcent for "slight revision" and 30 petcent for "major 

revisions". It should be noted that Selby's unit of observation was the software module, 

whereas in this study the unit of observation is the entire software project. One would 

expect the project data to include the effort needed to access and integrate the reused 

modules into the project. This integration effort is probably not captured in the module 

dam. 

Verbatim reuse, on the other hand, is estimated to produce productivity 

improvements 2.12 times greater than code developed from scratch. This fmding is 

consistent with experience that some effort is needed to integrate even completely reused 

software into the project [14]. While our sample indicates that verbatim reuse generates 

relatively large increases in development productivity. the improvements are not as large 

as the factor of 24 improvements that "complete reuse" had over new development 

reJXX1ed by Selby [10]. The reasons for this difference are most likely the same as those 

offered for the modified reuse results. 

The regression results also conflfDl that verbatim reuse produces larger increases 

in productivity than modified reuse. 



www.manaraa.com

80 

Weighting the mix of new, modified. and verbatim code of projects in the 

sample by their respective computed productivity allows a comparison of the effort that 

was expended to develop the code versus the effort that would have been expended to 

develop the same code from scratch. The average productivity improvement from all 

sources of reuse when applied to the sample is 22 percent 

E. SUMMARY 

This paper empirically tested the hypothesis that software development projects 

that made use of existing software components would take less labor effort per line of 

delivered code than projects not built from existing code. Data taken from a survey of 49 

DoD projects were used in an OLS model to test the hypothesis. All of the projects were 

written in COBOL and all pe.rfmned general-purpose automatic data pocessing functions. 

The results indicate verbatim reuse produced productivity improvements 2.12 

times greateJ'than code devel~ from scratch. Modified reuse was estimated to improve 

productivity by 4 percent. Howevez, there was no statistically significant difference in the 

impact of modified code and new code on development productivity. Weighting the 

sample observations by the computed productivities allowed us to compare the effort that 

was expended to develop the code versus the effort that would have been expended to 

develop the same code from scratch. The average productivity improvement from all 

SOUIteS of reuse when applied to the sample was computed to be 22 percent. 

This paper also presented results of additional explanatory variables that 

characterized the devel~t environment and the age and complexity of the code. All of 

these explanatory variables carried the expected signs and weze statistically significant. 

REFERENCES 

[1] Boehm, B. W., and P.N. Papaccio. "Understanding and Controlling Software 

Costs," IEEE Transactions 011 Softwar~ E"giM~ring, vol. 14, no. 10, October 

1988. 

[21 Cruickshank, R. D., and J. E. Gaffney. "An Economics Model of Software 

Reuse." Proceedings, Conference on Analytical Methods in Software 

Engineering Economics, McLean, VA, April 1991. 



www.manaraa.com

81 

[31 Kang, K. C., and L. S. Levy. "Software Methodology in the Harsb Light of 

Economics." Information and Software Technology, vol. 31, DO. 5, June 1989. 

[4] Boehm, B. W., and W. E. Royce. "Ada, COCOMO and the Ada Process Model." 

Proceedings, Fifth International COCOMO User's Group Meeting, SEI, 

Pittsburgh, PA, October 1989. 

[5] Parnas, D. "Design of Program Families," IEEE Transactions on Software 
Engineering, vol. 2, DO. 1, June 1976. 

[6] Garnett, E. S., and J. A. Mariani. "Software Reclamation," Software 
Engineering Journal, vol. 5, DO. 3, May 1990. 

[7] Tracz, W. (ed.). Software Reuse Emerging Technology. IEEE Computer Society 

Press, 1988. 

[8] Humphrey, W. S., and N. D. SingpurwaUa. "Predicting (Individual) Software 

Productivity," IEEE Transactions on Software Engineering, vol. 17, DO. 2, 

February 1991. 

[9] Banker, R. D., and C. F. Kemerer. "Scale Economies in New Software 

Development," IEEE Transactions on Software Engineering, vol. 15, no. 10, 

October 1989. 

[10) Selby, R. W. "Empirically Analyzing Software Reuse in a Production 

Environment" in Tracz, W. (ed), Software Reuse Emerging Technology, IEEE 

Computer Society Press, 1988. 

[11] Levitan, K. B., 1. Salasin, T. P. Frazier, and B. N. Angier. "Fmal Report on the 

Status of Software Obsolescence in the DoD." Paper P-2136, Institute for 

Defense Analyses, August 1988. 

[12] Defense Logistics Agency. "DoD Automated Resources Management System 

(ARMS) Users Guide." Apil1985. 

[13) Boehm, B. W., Software Engineering Economics. Englewood Cliffs, NJ: 

Prentice-Hall, 1981. 

[14] Boehm, B. W., and W. L. Scheclls. "Megaprogramming." Mimeograph, undated. 



www.manaraa.com

A SOFTWARE COST MODEL OF REUSE WITHIN A SINGLE SYSTEM 

Overview 

R. D. Cruickshank and J. E. Gaffney, Jr. 
Software Productivity Consortium 

2214 Rock Hill Road 
Herndon, Virginia 22070 

This paper presents a software economics model that can be used to demonstrate the cost 

effect of the the multiple use (i.e., reuse) of software components within a single software 

system. The basic idea is that one unit of code may be employed in more than one function

al unit of a given software system, thereby reducing the overall development cost from 

what it would have been if each copy of that unit of code had had to be developed separate

ly in each instance in which it was employed. Other economics effects that may occur, 

such as enhanced quality and reduced schedule, are not covered here. This model is 

based on earlier work (Gaffney and Durek 1991; Gaffney 1989; Cruickshank and Gaffney 

1991) on the economics of software reuse. The earlier focus was on the economics 

benefits of reuse over multiple software systems. The new model presents the cost 

benefits that can result from the multiple use of oJ.1e software component developed 

for a given software system within that software system. 

Reuse economics models can be used to demonstrate the benefits that can be derived 

from software. These models aid the financial analyst, manager, or software engineer 

to better understand reuse in terms of the potential impact of decisions such as how 

much software to reuse. The paper presents a model that can be used to determine the 

economics impact of reuse within a single software system or product. An example 

application of this model is provided that uses data from an actual project. 

Modes of Software Reuse 

There are two modes of software reuse; within a single software system or across several 

related software systems. The former mode may be called intra-project reuse; the latter 

may be called inter-project reuse.The first mode includes the case in which a software 

project produces one product or computer software configuration item (CSCI) (De

partment of Defense 1988a). The first mode also includes the in which software compo

nents are reused over a set of functionally related but separately specified and implem

ented products (CSCls) which are parts of a single large software system. The second 

mode, reuse over several related software products, includes the case in which software 

components are reused over a succession of related software products. In this situation, 

a series of software projects over time produces a succession of versions of a software 



www.manaraa.com

84 

product, a version being a major revision and update. The second mode also covers the 

case in which several new systems are developed concurrently which use some software 
components in common. It is important to note that both modes can occur in one sys

tem. That is, there tan be reuse within a given system as well across that system and 

others. 

Software reuse can be viewed as multiple use; that term is used in this paper. Software 
can be reused or multiply used in a number of ways. For example, a single software devel

opment project could use a specific software function or module in several places in 
the product being produced. This is an example of multiple use within a single system. 
Several software functions could be multiply reused in the software product being de
veloped. Alternatively, software reuse can occur across a family (Parnas 1976) of soft

ware systems. In this mode of multiple use, a function or set offunctionscould be multi
ply used across successive versions of a software system. A family (parnas 1976) is a set 
of software systems having similar descriptions. These systems have similar require
ments that can be (or are) satisfied by a common architecture and represent a set of 
closely related design choices at the detailed level. 

To generalize, software can be used singly or multiply within a family of related software 
systems. As shown by Pamas, large scale reuse can be sequential (from one software system 

to another as with a succession of versions of a software product) or parallel (a number 
of software products developed simultaneously as part of a single software system). 

The term 'reusable' means simply that a software unit or component can be employed 
in more than one instance. These components may be used once or many times in a 

given software system, or they may be used many times in a family of software systems. 
In the latter case, a common set of components may be used by several systems which 
could be developed in parallel or sequentially. 

Reuse Within a Single System 

Reuse within a single software system is the multiple use of one or more new units or 

components developed for that system. For example, an analysis of the requirements 
for a new system might indicate that each of several major functions in that system in

cludes a very similar or identical capability. One software unit is then developed which 

can be employed in each of those major functions. Figure 1 represents this concept of 
the multiple use of n new software components in N major functions of a single system. 

A given software system has two categories of code. new and reused (IEEE 1992). There 

are two categories of new code, multiply used, as just described. and singly used. The 
reused code is that which is employed across several systems. The relationships of the 



www.manaraa.com

85 

costs of new and reused code is covered in the reuse cost model equation presented 

later in this paper. 

Major Function 1 Major Function 2 Major Function N 

SW Group 1 

SW Groupn 

Figure 1. Reuse Within a Single System 

Activity-Based Cost Models 

Activity-based cost models (Cruickshank and Lesser 1982; Gaffney 1983; Cruickshank 

and Gaffney 1991) represent the cost of a software development project in tenns of 

the costs of the activities which comprise the development cycle for that project. Typical 

development activities are: requirements analysis, design, implementation, and test

ing. The cost model presented here for new code which includes reuse within a project 

is an activity-based cost model.The cost of developing the new code for a software sys

tem, CN, is equal to the product of the total unit cost (in labor months per thousand 

source statements, LMIKSLOC) and the amount of new code (in KSLOC) developed. 

The total unit cost is equal to the sum of the unit costs for the activities that are 

employed in the creation of the new code. The total cost of all n activities in the cre

ation of the new code in a software system can be represented by the equation: 

D 

CN = I (LMjKSLOC)i.Dew . KSLOCnew 

i=l 

A similar equation can written. for the cost of reusing code, CR, for reuse across systems. 

The set of activities actually used on a given project may be selected developed from 

a 'menu' of process activities. The values used in estimating the unit costs of the activi

ties may be based on the cost data from .previous experience maintained by the devel

opment organization. The software development activities used in this paper corre

spond to the activities in DoD Standard 2167 A (Department of Defense 1988b). These 

activities are listed in Table 1. 



www.manaraa.com

86 

Table 1. Symbols for Unit Costs of Development Activities 

Activity Symbol of Unit Cost 

Requirements Analysis CRA 

Preliminary Design Cpo 

Detailed Design Coo 

Code and Unit Test CcUT 
esc Integration Test Ccrr 
esCITest Ccr 

Reuse Cost Models 

Each mode of reuse (intra-system and inter-system) used on a project should pay for 

itself. This requirement should be reflected in the economics model used to evaluate 

the potential for each type of reuse. Payoff analyses can be done separately for each 

mode of reuse, but the payoff of one mode may be affected by the presence of the other 

mode of reuse. Reuse over a succession of versions (mode two) should amortize the 

capital investment made (including that for domain analysis) to provide for reuse across 

the systems. The total cost of multiple use of a particular software component within 

a single system (mode one), including the cost of domain analysis, must not exceed the 

cost of uniquely developing each of the replications. 

The cost of developing the new code in a software system in which there is intra-system 

reuse, reuse within a single system, (mode one) is given by: 

• CN = Cost of developing the new code for a system (in labor months, LM, or 

labor hours, LH). 

• Csu = Cost of development activities for single use (unique) code. 

• Cu = Cost of unique development activities for multiply used code created 

for this system. 

• Cc = Cost of common development activities for multiply used code created 

for this system. 

The cost model for reuse over several software systems or over several versions of a 

software system (mode two) is given by: 



www.manaraa.com

• 

• 

• 

87 

CD = Cost of domain engineering which includes the creation of code that 

is reused across N systems. CD is prorated across N systems (LM). 

CN = Cost of the new code developed for an application in a family of systems 

(LM). 

CR = Cost of reusing code developed for reuse across N systems (LM). 

This model can include mode 1 reuse, multiple use of new code, by substituting the 

equation for eN given above (for mode 1 reuse) for CN in the equation for Cs. 

Definition of the Cost Model of Reuse Within a Single System 

Let: 

• 

• 

• 

• 

• 

SN = the total size of the new code in the delivered system (in KSLOC). 

Su = the total size of the non-replicated new code (in KSLOC) in the software 

product uniquely developed for the software system. 

SSi = the amount of new code (in KSLOC) in component i developed for mUl

tiple use in the system. There are n such components. The ph component is 

replicated Ni times. 

SRD = the total amount of new code developed for multiple use in the system. 

This is the sum of the sizes of the n new code components developed for multi

pie use in the software system. 

SRE = the total amount (all replications) of multiply used new code (KSLOC), 

where: 

n 

SRE = I Ni . SSi 
1=1 



www.manaraa.com

88 

Thus, the total size of a the new code in a software product, SN KSLOC, which includes 

the multiple use of n software components, is given by: 

Thus intra-system multiple use enables SRE-SRD KSLOC less code to be developed. 

This reduction in the amount of new code that has to be developed is the source of any 

potential savings in the cost of new code development in a software system. 

Model Equations 

The principal cost spreading assumptions of the model for multiply-used or shared 

code are: 

1. The requirements analysis, preliminary design, detailed design, and code/unit 

test activities are done once for each unit to be replicated. Tbe costs of these 

activities for a unit are amortized over all of the replications of that unit. 

2. The unit costs of requirements analysis, preliminary design, detailed design, 

and code/unit test are 'm' times those for a unit of code which is intended for 

single use.Some experience The parameter 'm' is the ratio of the total cost of 

implementing a software unit suitable for multiple use to the cost of imple

menting a software unit for single use. The parameter m is assumed to be a 

number greater than or equal to 1.0 since the costs of implementing a unit suit

able for multiple use are assumed to include the extra costs of domain analysis 

and reengineering in addition to the costs of development for single use. The 

model assumes the same value of m for each activity. Some experience sug

gests that 'm' may be on the order of 1.5 to 2.0. 

3. The cost of system testing is allocated to all of the copies of the multiply used 

code. This cost is composed of the activities of ese integration test and eSCI 

test as shown in Table 1. 

4. Intra-system multiple use consists of making N copies of each multiply used 

component and distributing then through the system as required. Note that 

the cost model of reuse within a single system also covers the case in which 

just one copy of each desired components is made and those single copies are 

shared by the rest of the system. 



www.manaraa.com

Let: 

89 

• CNB = the baseline cost of the new code in a system. This is the value of CN 

for the system if none of the new code were done for multiple use (SRE = 0). 

• CNR = the cost of the of the new code in a system in which there is multiple 

use of some of the new code (SRE > 0). 

Note that CNR < CNB for reuse or multiple use within a system to payoff. 

The cost of new code for a software product without multiple use, CNB, is given by: 

The cost of new code for a software system with multiple use of code, CNR, is the sum 

of three elements including the cost of developing the unique code or: 

1. The cost of developing the unique (single use) code is CSU=CVNB·SU. or: 

2. The cost of creating one copy of each of the N groups of multiply used code 

is Cu=m'CVNB"SRD, or: 

The parameter m is the ratio of the cost of developing a unit suitable for multiple use 

within this software system relative to the cost of developing a unit not especially de

signed for multiple use. 

3. The cost of system testing all copies of the multiply used code is 

CC=CVNBTBRE, or: 

That is, Cc is the cost of doing CSC integration test and CSCI test. 

Thus, the overall cost of the new code in an application system in which there is both 

unique and multiply used code is given by the expression: 



www.manaraa.com

90 

Observe that CVNB = CVND + CVNT. That is, the baseline new code development unit 

cost is equal to the sum of the development and the testing unit costs. 

The savings, Ts , achieved by reuse or multiple use in the creation of a program is: 

Intra-system reuse pays off ifTs >0. Since Ts=CNB-CNR and SN=SU+SRE: 

Thus intra-system reuse pays off if: 

Ts = SRE - m . SRD > 0 

Intra·System Reuse Break·Even Cost Threshold 

Intra-system reuse (multiple use) pays off whenever: 

The intra-system reuse (multiple use) break-even cost threshold occurs when: 

We then define the break-even multiple use expansion ratio, X, to be: 

n 

LNi'SSi 
SRE = ..:..i=....:I ___ = X 

SRD ISsi 
i=l 

Multiple use or reuse within a program is desirable if Ts > 0, i.e. if: 

n 

SRE 
LNj'SSi 
i=l 

SRD 
n >m 

ISsi 
i=l 



www.manaraa.com

91 

As long as the value of the parameter m is less than the value ofthe multiple use expan

sion ratio, it is possible to realize savings through multiple use of software components 

to compose the new software in an application system. 

Using the definition of X provided above, we can rewrite the expression for eN given 

earlier, and then develop the expression for CVN, the unit cost of the new code (includ

ing the multiply used code) for a software system. This expression can be employed to 

show the effect of multiply use of software components on the value of CVN (to reduce 

it from the value it would have were there no multiply use). 

Recall the expression for CN developed above: 

Dividing through by SN and taking the definition of X into account, we have: 

Note that if there is no intra-system reuse, SRE = 0, Su = SN, and CVN = CVNB. Where

as, when there is intra-system reuse, CVN is reduced from this value to one which we 

can term CVNR. 

Model Application 

The model is applied to the unit costs in Table 4 and to the software multiple use data 

in Thbles 2 and 3. The code referred to in this example (Sutton 1991) was not actually 

coded in Ada. However, that is irrelevant to the use of its code counts in the example 

application of the model equations. 

Table 2. Multiple Use Sizes 

Reuse Parameter Size in KSLOC 

SN 93.393 

Su 23.483 

SRD 11.414 

In the present case there are n = 3 groups of multiply used code, and the values for the 

the three SSi and Ni are given in Thble 3. 



www.manaraa.com

92 

Table 3. Application Data 

Group Number of Copies Amount of Code in 
(i) (Ni) KSWC (SSi) 

1 5 7.070 

2 2 1.110 

3 10 3.234 

Total 11.414 

Thus, SRE = 69.91 KSLOC. 

The multiple use expansion ratio for this example then is: 

x = SRE = 69.91 = 6.05 
SRO 11.414 

N1Ssi 

35.35 

222 

3234 

69.91 

Thus 6.05 is the maximum value of m that could exist for break-even to occur with in

tra-system reuse in the present case. If m is less than this figure, a return will be realized 

on the investment in creating software units for multiple use in this system. This 6.05 

figure is much larger than the value of m of 1.5 cited earlier. Hence, we would expect 

a good return on the investment in developing units suitable for multiple use and using 

them in this system. 

Thble 4 shows some unit costs by activity that are characteristic of embedded Ada software. 

Table 4. Ada Software Development Unit Costs 

Unit Costs, 
Activity Symbol LM/KSWC % Of Dev. Process 

Requirements Analysis CRA 0.74 7.4 

Preliminary Design Cpo 1.67 16.7 

Detailed Design COD 2.22 22.2 

Code and Unit Test CCUT 2.22 22.2 

CSC Integration Test CCIT 1.60 16.0 

CSCl Test CcT 1.55 15.5 

Totals - 10.00 100.0 

Using the equations developed above, and letting m = 1.5, we find that CN = 933.93 

LM. the cost for development without reuse., and CNR = 572.23 LM, the cost of devel

opment with reuse. That is, CNR =O.613·CN. Also. note that the savings achievable 



www.manaraa.com

93 

through reuse,Ts, in this case is 361.70 LM, or 38.7 percent of CN. This result could 

be computed using the equation developed above for CVN as a function of m, X, etc. 

Observations About Domain Engineering 

Both large scale reuse across systems as well as multipl.e use within a system can be 

difficult to achieve unless the software components to be reused and/or multiply used 

have been developed based on a domain analysis. Domain analysis is a major activity 

of domain engineering which is devoted to the creation of software components that 

can be used in more than one instance organized in a domain. 

Scope of the Term "Multiple Use" 

It is important to note that as stated earlier, multiple use can consist of making N copies 

of each multiply used component and distributing them through the system as re

quired. However, the cost model of reuse within a single system also covers the case 

where just one copy of each of the desired components is made an,d these single copies 

are shared by the rest of the system. Subroutines that are callable from any point in 

the computer program are such an example. Multiply used code is actually shared code. 

References 

Cruickshank, R.D., and 
J.E. Gaffney Jr. 
1991 

Cruickshank, R.D .. and 
M. Lesser 
1982 

Department of Defense 
1988a 

Department of Defense 
1988b 

Gaffney. J.E. Jr. 
1983 

An Economics Model of Software Reuse. Conference 
on Analytical Methods in Software Engineering 
Economics. McLean, Virginia: MITRE Corp. 

An Approach to Estimating and Controlling Software 
Development Costs. The Economics of Data Processing. 
New York, New York: Wiley. 

Military Standard - Configuration Control, Engineering 
Changes, and Waivers, DoD-STD-480B. Washington, 
D.C. 

Military Standard - Defense System Software 
Development, DoD-STD-2167A Washington, D.C. 

Approaches To Estimating And Controlling Software 
Costs, Computer Measurement Group International 
Conference on Computer Performance Evaluation. 
1983. Washington. D.C. 



www.manaraa.com

94 

Gaffney, J.E. Jr. 
1989 

Gaffney, J.E. Jr., and 
T. Durek 
1991 

Institute of Electrical and 
Electronic Engineers 
1992 

Parnas, D.L. 
1976 

An Economics Foundation for Software Reuse. Herndon, 
Virginia: Software Productivity Consortium and AlAA 
Conference on Computers, Monterey, California. 

Software Reuse-Key to Enhanced Productivity: 
Some Quantitative Models. The Economics of 
Information Systems and Software. pp 204-219. R. 
Veryard, ed. Butterworth-Heinemann, Oxford, 
England. 

IEEE Standard for Software Productivity Metrics 
(P1045} Draft 5.0. 

On the Design and Development of Program Families. 
IEEE Transactions on Software Engineering SE-2:1. 



www.manaraa.com

FORESTRY AS AN AL1ERNATIVEMETAPHORFORSOFTWARE 

DEVELOPMENT: APPLYING MUL TIOBJECTIVE IMP ACT ANALYSIS 

Gregory K. SHEA 
The Software Productivity Consortium 

2214 Rock Hill Road 
Herndon, Virginia 22070 USA 

Clement L. McGoWAN 
The MITRE Corporation 

7525 Colshire Drive 
McLean, Virginia 22102 USA 

I. USIlI;G METAPHORS TO UlI;DERSTAND 

Metaphors draw parallels between dissimilar situations. Metaphors help us 

understand and "see" one situation in terms of another. For example, the "evening of 

life" from the metaphor "a life is like a day" suggests a life, mostly completed, 

moving inexorably to its end. Metaphors sometimes have the power of poetry to 

change how we feel about and see something familiar. 

Indeed, as George Lakoff obscrves [11], "the way we use imaginative 

mechanisms [is] central to how we construct categories to make sense of experience." 

Metaphors are one of our principal imaginative mechanisms. Metaphors provide us 

with (i) a distinctive but partial perspective, (ii) a way to think, see, and discuss, (iii) 

new insights, and even (iv) "transferred" feelings because we focus on the parallels. 

Analogies help us to understand. 

The language we use to describe a situation often contains hidden, implicit 

metaphors. For example, Lakoff [11] presents several metaphors for anger including 

the heat of a fluid in a container and an opponent in a struggle. Phrases about anger 

such as "lost his cool," "reached the boiling point," "simmer down," "all steamed 

up," "blew up, exploded" invoke the comparison with heating a fluid in a covered 

container. Similarly anger as an opponent is implied by verb phrases such as battle, 

overcome by, subdue, wrestle with, seized by, yielded to, and fought back. 



www.manaraa.com

96 

Metaphors for processes can give us insight, but when we adopt a single 

(implicit) metaphor for a process it can dramatically influence our subsequent 

actions, decisions, success measures, feelings, and even how we see people 

participating in the process. For example, Gareth Morgan [14] examines some 

images of business organizations. The organization as a machine is one pervasive 

metaphor that sees a business organization as rationally divided into distinct units 

each with defined responsibilities. This machine view promotes good communication 

paths for directives and status reports in order to control the system. This metaphor 

leads naturally to efficiency studies to "tune" the machine, but not to a fundamental 

restructuring. The "organization as a machine" view also downplays human aspects 

(e.g., ftlling a vacancy becomes "fitting a resource into a slot"). 

There are strengths and weaknesses, insights and blind spots associated 

with any compelling metaphor for a large process. When we view a business 

organization as a political system, we analyze actions and recommendations in terms 

of stakeholders. The political metaphor helps us to deal with power, interest groups, 

and conflict resolution. However, this particular metaphor, when used exclusively, 

creates a cynical, politicized attitude (e.g., always looking for hidden agendas). 

II. SOFlWARE DEVELOPMENT AS MA."IUFACfURING 

The dominant metaphor for software development is the manufacturing 

assembly line. The phases of development (e.g., define the user requirements, design 

the overall system as interacting components, detail the workings of the components, 

code the components, test, and integrate) are seen as stations in an assembly line that 

produce intermediate products (or sub-assemblies). Over time this software assembly 

line transforms user needs into a working system. 

This prevailing manufacturing metaphor directly influences the models and 

methods used to improve the engineering and economics of software. Most 

importantly, the software development work flow was seen as a process to be defined, 

institutionalized, monitored, automated, and improved. This was a fundamental 

advance. In addition, scheduling techniques from manufacturing dealt with parallel 



www.manaraa.com

97 

development tasks and helped to identify critical paths. The basic measures of 

productivity, costs, and quality from manufacturing were adapted to software 

development 

Today, manufacturing quality assurance techniques (such as statistical 

process control) from Deming and Juran [4, 8] are applied analogously to the 

software development process. Improving the quality (in terms of defect density) of 

intermediate products (e.g., design documents or code) on the critical path should 

improve, it is believed, the overall quality of the final product and the productivity of 

the process. 

A. MANUFACTIJRING METAPHOR WEAKNESSES 

The difficulty with the manufacturing metaphor is that focusing 

improvement efforts, as in manufacturing, on keeping outputs within tolerance 

doesn't address the principal risks of software development [3]. Manufacturing 

assumes that function follows form. That is, if the parts (e.g., design or code 

modules) are close enough to their specifications, then the parts will function 

correctly. This manufacturing view largely ignores software system design, which is 

the allocation of computational responsibilities and interfaces to components. A 

deign must satisfy clearly the identified requirements and constraints and 

subsequently absorb changes to the requirements. Redesign and reallocation of 

components and interfaces is an important - and risky - part of software 

development. Besides ignoring design, the manufacturing metaphor for software 

development gives little insight into how to go about making tradeoffs among 

objectives (e.g., cost, functionality, schedule, reliability, quality) [2]. 

B. SEEKlNG AN ALTERNATIVE METAPHOR 

We seek an alternative metaphor for software development. This alternative 

should stress that form follows function by having planning and designing as 

principal activities. The new metaphor should deal with multiple conflicting 



www.manaraa.com

98 

objectives, tradeoffs and satisficing. It should also handle constraints, mid

development changes, and system evolution over time (i.e., continued development 

after initial "delivery"). Our new metaphor should guide us in how we monitor 

software development, detect problems (or breakdowns) and then intervene and 

correct the situation (in an engineering sense). That is, our metaphor should 

correspond better to the realities of software development than does the assembly line 

metaphor. 

In addition, a well-chosen metaphor for software development will suggest 

mathematical and analytic techniques to apply. Such techniques would help us to 

evaluate the effects and the tradeoffs of different courses of action. Further, the 

alternative metaphor should suggest how we accommodate new software 

development methods and changes to (or greater quantitative knowledge of) existing 

methods. 

With the above goals and criteria for a new metaphor for software 

development, we have identified three natural candidates. These candidates are (i) 

urban planning dealing with zoning, infrastructures, and building codes, (ii) civil 

engineering with the design, plan, and construction of bridges, dams, etc., and (iii) 

public sector forestry. These three candidate metaphors have many parallels in terms 

of the issues dealt with and the mathematical techniques employed. Partially for its 

novelty, and principally for its parallels to essential software development concerns, 

we use the planning and developing of a public forest as our alternative metaphor. 

III. SOFIW ARE DEVELOPMENT AS FORESTRY 

Planning a large, public forest involves three main steps. First, the 

objectives are listed in order of importance with a particular emphasis on time scale 

(i.e., system properties that take longer to develop or must be maintained over an 

extended time span). Second, the proposed forest is specified and decomposed down 

to the stand level (i.e., analogous to the component of detailed design). This 

decomposition is an iterative process with much rework to deal with system 

constraints, to discover any implicit conflicts in the objectives, and to mitigate risks 



www.manaraa.com

99 

(including possible changes in or extensions to the original objectives over time). 

Third, forest planners determine ways to monitor the forest-under-development for 

predicted progress towards the objectives. Monitoring a forest during development 

involves multiple actions (e.g., samples, tests, observations) with different time and 

space granularities. 

A. FORESTRY OBJECTIVES AND CONSTRAINTS 

To plan a public forest, one must deal with multiple objectives and 

constraints [16]. Typically the public forest must: be economically self-supporting, 

have a specified quality and variety (species) of trees, conform to stringent water 

quality standards, support natural wildlife as well as recreational activities, yield 

sufficient timber harvests over time, and be aesthetically pleasing. Planners must 

view the forest (i.e., the software-to-be-developed) as a system. This means they must 

project the system and its environment over time and plan for possible changes. 

Forest planners need to optimize for both long-term and short-term performance. 

During development they must evaluate corrective actions based on overall impact, 

not just as localized improvements. 

B. FORESTRY DESIGN 

The design of a public forest offers many interesting insights into, and 

parallels with, the realities of software design. Some of these parallels are: 

• Rank system requirements (objectives) in order based on the time they take to 

achieve. 

• Partition the system (forest) into subsystems (wnes) that trace to requirements 

(objectives). 

• Evaluate the design against a sufficiency level for each objective. 

• Adjust the interfaces (zone boundaries) as needed. 

• Partition the subsystems (wnes) into components (stands) to assign work and to 

monitor. 



www.manaraa.com

100 

• Project (estimate) over time the properties and characteristics of the components 

(stands). 

Building in quality is fundamental to the forestry design philosophy. You 

get quality by good design, good (silvicultural) techniques, and good execution. You 

cannot get adequate quality by inspection (of stands). From the design itself you can 

derive the metrics to monitor the system under development. Your should detennine 

your choice of state variables (i.e., what to monitor and measure) from the system 

requirements (objectives). Then you aim to express the consequences of development 

actions (and of uncertain behaviors) in tenns of the state variables. 

C. FORESTRY MONITORING 

The monitoring and measuring of a forest provides a new perspective on 

software metrics. The goal of monitoring is to uncover problems early both to 

minimize their effects and to optimize the development and monitoring activities 

with respect to the system objectives. To monitor we inspect and measure 

components (stands) and compare the measures against projections (such as rate of 

growth, health, amount). There are standard remedial actions to correct problems 

(such as flre or insect damage). Measuring and monitoring activities continue during 

maintenance. Techniques are used to optimize the frequency and the timing of 

component (stand) inspections. 

D. OPERA 1101\S REsEARCH TECHNIQ1JES APPLIED TO FORESTRY 

We contend that forestry planning and engineering is a better metaphor for 

software development than is the manufacturing assembly line. Forestry is an 

application area where operations research techniques have been used extensively. 

Lembcrsky and Johnson [12] give a thorough description of a model, variables, 

solution method, and resources. Kennedy [10] covers dynamic programming 

applications in forestry management. Harrison and Rosenthal [6] use a nonlinear 

utility function with eight objectives tailored individually to each landowner. And 



www.manaraa.com

101 

Anderson et al. [1] deal with the multiobjective nature of managing public forests. 

They use non-interior set estimation instead of preference-based goal programming. 

In what follows, we will exploit the forestry metaphor by showing how 

multiobjective, multistage operations research techniques previously applied to 

forestry may be applied to software development. In particular, all objectives and 

criteria are not mapped to a single common unit (e.g., dollar cost); in fact, objectives 

are often incommensurable, such as system reliability and software component size. 

Instead, alternative actions and interventions at decision points are evaluated against 

their impact on the multiple end objectives (i.e., optimize for end goals rather than 

for a particular local property of an intermediate product, such as the quality of a 

design document). 

IV. APPLYING (FORESTRY-INSPIRED) TECHNIQUES TO SOFIWARE DEVELOPMENT 

As stated earlier, our metaphor requires optimizing for end goals while 

accommodating development constraints. This suggests a decision framework which 

takes the form of a constrained nonlinear program [13] like that shown below: 

minimize rex) 

subject to hex) = 0, 
g(x):;;; 0, 

xen 

(1) 

where x is the state vector (e.g., cost or schedule); rex) represents a vector objective 

function (e.g., dollars or labor-hours) to be optimized; hex) and g(x) are vector 

constraints (e.g., budget or work-week), and n is the feasible solution space (defmed 

in Section IV.B). Although Equation (1) captures the essence of constrained 

optimization, it does not give much insight into handling multiple, often conflicting 

and incommensurate, objectives. It also poorly captures the dynamic nature of forest 

development. 



www.manaraa.com

102 

A. MUL TIOBJECflVE MULTISTAGE OPTIMIZATION 

One adaptation which does capture the optimization of multiple objectives 

over time is multiobjective multistage optimization [5] where the software system is 

represented as a state vector. and the stage-wise evolution of the system is described 

by the following two equations: 

given 

x(k + 1) = g( x(k), u(k). k) • 

x(O) = Xo 

g (-.'. k) : 9t" x 9t r ~ 9t" 

k=0.1.··· 
(2) 

(3) 

where x(k) E 9t" denotes the state of the system at (development) stage k • u(k) E 9{r 

denotes the decision (POlicy or action) at stage k • g(· ... k) is a function representing 

the transition of the system from state x(k) under decision u(k) at stage k • and Xo is 

the initial state. 

Assume that the (software development) process has T stages, and that all 

system objectives are elements of a set :f, defined by: 

:f = {Ji : Ji = 1/ (x(k). u(k). k). i = 1.2 •.. .• Nt ; k = 0,1, . ..• T -I} (4) 

where I/(x(k).u(k).k) is a function representing the i objectives of interest at stage 

k . Based on the previous four equations. the optimization problem can be expressed 

as: 

. [AO(X,U;O)] . [l(X'U;I)] mm. mm. . . 
u o· , ... , U l' 

INa (X,U;O) IN, (x.u;1) 

. [AT
-

1(X,U;T-l)] mm . 
, ... , U T-l • 

INT _, (x,u;T -1) 

(5) 



www.manaraa.com

103 

subject to: 

given 

x(k+l)=g(x(k),u(k),k), k=O,.··,T-l 

x(O)=xo, 

(x(k),u(k))Enj;~~nX~r, k=O,.··,T-l 

X(T)E nr ~~n 

(6) 

(7) 

where f/(x,u,k) == f/(x(k),u(k),k); Nj; indexes the objectives of interest at stage k; 

(x(k),u(k» = [XI (k),.· ·,.x,,(k), u1 (k),.· ·,ur(k)], (where ' denotes transpose); and the 

feasible solution space sets (nk,k =O,···,T and n r ) are each specified by a system 

of inequality constraints. 

From a software development perspective, ::r represents the set of process 

goals. Furthermore, Equation (4) permits sub-goals to be defined for each phase of 

the development cycle. The optimization problem outlined in Equation (5) involves 

solving a sequence of single-stage, multiobjective optimization problems where the 

decisions made at stage k affect stages k + 1, k + 2, ... , T -1. This is because the 

objectives in Equation (4) are themselves a function of the states which evolve 

according to Equation (2). 

B. DEFINITIONS 

To demonstrate how this model accommodates multiple objectives that often 

conflict, we must first define the following concepts: 

Policy Decision. A policy decision is any pair (X ,U) where 

U = [u(O),. ··,u(T -1)] is the decision sequence and X = [x(O),.· ·,x(T)] is the 

corresponding stale trajectory determined by Equation (2). 



www.manaraa.com

104 

Feasible Decision. A policy decision (X ,U) is feasible if it satisfies both the 

decision and state space constraints, shown in Equation (7). 

Nonin/erior Decision. A feasible policy decision (X',U') is said to be 

noninferior if no other feasible policy decision (X,U) exists such that 

//(x,u,k) ~ f/'(x' ,u' ,k) 'Vi E N" == 1,2, ... ,N", k = O,···,T -1 with strict 

inequality holding for at least one i and k . Otherwise it is inferior, and is 

said to be dominated by some other noninferior decision. 

Pre/erred Decision. A noninferior policy decision (X' ,U·) is a preferred 

policy decision if it is preferred by the decision maker over all other 

non inferior policy decisions. 

The definition for a noninferior decision shows that it is not sufficient simply to 

obtain noninferior solutions at each stage (strict inequality holding for at least 

one i ) but rather to obtain noninferior solutions for the entire process horizon (strict 

inequality holding for at lest one k). The examples shown later will demonstrate 

that for any given noninferior policy decision, the only way to increase the value of 

one objective function is to decrease the value of some other objective function in that 

same stage or decrease the value of any objective function in another stage. 

c. MARKOV DECISION PROCESS 

Another approach involves modeling Equation (1) as a Markov Decision 

Process (MDP). In its most general form, the MDP, shown in Equation (8), is 

developed and solved as follows [7]: 

1. The problem is divided into states which completely describe all of the 

possible conditions that the system could be in at any point in time. 

2. Possible actions to be taken, or alternatives, are determined for each state of 

the system. 



www.manaraa.com

105 

3. The probability of going from one state to another, given that a specific 

action is chosen, is assessed for all states. 

4. A reward (be it financial, preferential, or some combination form) is 

associated with the transition from one state to another, under each 

alternative in each state. 

S. The process is examined over an appropriate period of time, and the 

expected reward of the various actions upon the states of the system is 

maximized. 

This is expressed mathematically as: 

I max[ N 1 ~" = a Q:' +~LP:""v" 
,,=1 

for each m, m = 1, .. . ,N 

where: 
v" == The present value of the previous policy (i - dimensional vector) 

m,n == States of the systcm 

a == Alternative 

Q:' == Expected reward from a single transition from state m under 

alternative a (j - dimcnsional vector) 

1 
~ == Discount factor = -----

1 + interest rate 

P:"" == Probability of going from state m to state n 

given that alternative a is chosen 

l == The present value of the current policy (i - dimensional vector) 

Equation (8) is solved by iteration until 

v" = v" Tin, n = 1, ... ,N 

(8) 

(9) 



www.manaraa.com

106 

The MDP representation is a good one for software development because: 

• Formal process models frequently make use of a state representation [19,15]. 

• Probabilistic models capture the intuitive notion that movement from a given 

state to a more desirable state is not necessarily a deterministic function; 

however, it may be influenced by the actions taken. 

• Costs are usually incurred in moving from a given state to any other state. 

A collection of best alternatives for each state of the system forms an optimal policy 

and can be likened to the noninferior policy decision defined earlier. In systems 

where the state transition is probabilistic, Equation (8) can be substituted for 

Equation (2). 

V.ExAMPLES 

The following four examples focus on the verification aspects of software 

development. Imagine a three-stage (k = 3) verification process consisting of design, 

code, and integration stages. At each stage, one may choose any combination of 

verification methods available for use at that stage, or no method at all. This is 

represented in Figure 1. 

M{5l~ 
~ verification .QIlS1!i verification ~ verification 

Inspection Inspection Integration Testing 
Analytical Modeling Functional Testing 

Fi gure 1. TIlree-stage Verification Process Representation 

For this sample verification process, four objectives are important: 

• Control errors per KSLOC (i = 1) 



www.manaraa.com

107 

• Interface errors per KSLOC (i = 2) 

• Labor cost (in dollars) per KSLOC (i = 3) 

• Machine cost (in dollars) per KSLOC (i = 4 ) 

The measured effects of the verification methods upon the four objectives, by stage, 

are shown in Table 1. The entries are defined as follows: 

gjl:: Proportion of control errors detected 

g~: Proponion of interface errors detected 

g;: Labor costs ($KIKSLOC) 

g!: Machine costs ($K!KSLOC) 

Remember that choosing neither method (in effect, performing no verification) at a 

given stage is always a choice. 

Table 1. Verification Method Data by Stage l 

a k Stage Method=u{k) . gt g~ g; g! 
1 1 Design Inspection 0.60 0.80 300 0 

2 1 Design An. Model. 0.90 0.90 3000 300 

3 1 Design Both 0.94 0.97 3300 300 

4 1 Design Neither 0.00 0.00 0 0 

5 2 Code Inspection 0.60 0.80 1200 0 

6 2 Code Func. Test. 0.80 0.60 1800 200 

7 2 Code Both 0.90 0.90 2600 200 

8 2 Code Neither 0.00 0.00 0 0 

1 Data derived from Basili [2] and the Software Productivity Consonium. 



www.manaraa.com

108 

9 3 Integrate Int. Test. 0.50 0.90 900 100 

10 3 Integrate Neither 0.00 0.00 0 0 

The state of the system (state vector) at any given stage is represented by a four-tuple 

consisting of: control error density, interface error density, labor cost/KSLOC, and 

machine cost/KSLOC. For purposes of illustration, suppose that state transitions are 

defined by: 

Xfk+l) = [l-lu(k)]xt for i=I,2 

Xfk+1) = luCk) + xt for i=3,4 

If the initial state of the system is defined as: 

Xo = (9.000 control errors/ KSLOC, 9.000 interface errors/ KSLOC, 

SO labor / KSLOC, SO machine/ KSLOC) 

(10) 

Equation (10) can be applied to the data in Table 1 to generate the policy space after 

each stage. Table 2 shows the thirty-two policies (composed of a sequence of actions) 

and their effects upon the four-objective state of the system after the integration 

stage. Similar tables can be generated for the policy space after the design and code 

stages. 



www.manaraa.com

109 

Table 2. Policy Space after Integration Stage 

Policy Design Code Integrate Control Interface Labor Machine 

Errors per Errors per Costs (K$ Costs (K$ 

KSLOC KSLOC per per 

KSLOC KSLOC 

1 Inspection Inspection lnt. Test. 0.720 0.072 2400 100 

2 nspection Inspection Neither 1.440 0.720 1500 0 

3 Inspection Func. Test. Int. Test. 0.360 0.036 3000 300 

4 Inspection lFunc. Test. Neither 0.720 0.360 2100 200 

5 Inspection Both Int. Test. 0.180 0.D18 3800 300 

6 Inspection Both Neither 0.360 0.180 2900 200 

7 Inspection Neither Int. Test. 1.800 0.180 1200 100 

8 Inspection Neither Neither 3.600 1.800 300 0 

9 An. Model. Inspection Int. Test. 0.180 0.036 5100 400 

10 An. Model. Inspection Neither 0.360 0.360 4200 300 

11 An. Model. IFunc. Test. Int. Test. 0.090 0.018 5700 600 

12 An. Model. Func. Test. Neither 0.180 0.180 4800 500 

13 An. Model. Both Int. Test. 0.045 0.009 6500 600 

14 An. Model. Both Neither 0.090 0.090 5600 500 

15 An. Model. Neither Int. Test. 0.450 0.090 3900 400 

16 An. Model. Neither Neither 0.900 0.900 3000 300 

17 Both Inspection Int. Test. 0.108 0.D11 5400 400 



www.manaraa.com

110 

18 1B0th Inspection Neither 0.216 0.108 4500 300 

19 Both Func.Test. Int. Test. 0.054 0.005 6000 600 

20 Both Func. Test. lNeither 0.108 0.003 5100 500 

21 Both Both Int. Test. 0.027 0.027 6800 600 

22 Both Both Neither 0.054 0.027 5900 500 

23 Both !Neither nt. Test. 0.270 0.027 4200 400 

24 Both lNeither Neither 0.540 0.270 3300 300 

25 Neither Inspection Int. Test. 1.800 0.360 2100 100 

26 Neither Inspection Neither 3.600 3.600 1200 0 

27 Neither Func. Test. Int. Test. 0.900 0.180 2700 300 

28 Neither Func. Test. Neither 1.800 1.800 1800 200 

29 Neither BOlh Int. Test. 0.450 0.090 3500 300 

30 Neither Both Neither 0.900 0.900 2600 200 

31 Neither Neither Int. Test. 4.500 0.900 900 100 

32 Neither Neither Neither 9.000 9.000 0 0 

A. EXAMPLE ONE 

Suppose one wanted to minimize total labor costs while constraining the 

final control error density to no more than 0.300 errors/KSLOC, final interface error 

density to no more than 0.100 errors/KSLOC, and total machine costs to no more 

than $400K/KSLOC. From Table 2, the feasible solution space consists of policies 9, 

17, and 23; the noninferior policies are also 9, 17, and 23. If a hypothetical decision 

maker wanted to minimize control errors among the noninferior choices, policy 17 



www.manaraa.com

111 

would be the preferred decision, as shown below (remember that U*(k) refers to the 

recommended action at stage k): 

U* (1) = use both verification methods 
U*(2) = perform inspection 
U*(3) = perform integration testing 

with: labor cost = S5400KlKSLOC 

B. EXAMPLE Two 

control error density = 0.108 crrors/KSLOC 
interface error density = 0.011 errors/KSLOC 
machine cost = $400KlKSLOC. 

Suppose one instead wanted to minimize the final control error density 

while constraining the final interface error density to no more than 0.100 

errors/KSLOC, total labor costs to no more than $4000K/KSLOC, and total machine 

costs to no more than S400KlKSLOC. From Table 2, the feasible solution space 

consists of policies I, 3, 5, 15, and 29 (note that policies 15 and 29 have the same 

control error densities). Since policy 29 dominates policy 15 and policy 3 dominates 

policy 29, the noninferior policies are I, 3, and 5. If a hypothetical decision maker 

wanted to minimize interface errors among the noninferior choices, policy 5 would 

be the preferred decision, as shown below: 

U* (1) = perform inspection 
U*(2) = use both verification methods 
U· (3) = perform integration testing 

wiLh: interface error density = 0.018 errors/KSLOC 
control error density = 0.180 errors/KSLOC 
labor cost = S3800KlKSLOC 
machine cost = S300K/KSLOC. 



www.manaraa.com

112 

C. EXAMPLE THREE 

Now suppose that one wanted to minimize the final control error density 

while constraining total labor costs to no more than $5500K/KSLOC, and total 

machine costs to no more than $500K/KSLOC. In addition, interface error density 

limits, or "goals," have been specified for each stage. Specifically, interface errors 

may not exceed: 

• 1.000 errors/KSLOC at design 

• 0.500 errors/KSLOC at code 

• 0.100 errors/KSLOC at integration 

This is an example of making tradeoffs across all three stages. From Table 2, the 

feasible solution space consists of policies 1, 3, 5, 6, 9, 15, 17, 20, 23, and 29. 

Policies 1, 15, and 29 violate the goals at code, and policies 3, 5, and 6 violate the 

goals at design (these tables are not shown). Therefore, the remaining feasible 

policies are 9, 17, 20, and 23; they are all noninferior. If a hypothetical decision 

maker wanted to minimize labor costs among the non inferior choices, policy 23 

would be the preferred decision: 

U·(1) = use both verification methods 
U'(2) = no action 
U'(3) = perform integration testing 

with: labor cost = $4200K/KSLOC 
control error density = 0.270 errors/KSLOC 
interface error density = 0.027 errors/KSLOC 
machine cost = $400K/KSLOC. 



www.manaraa.com

113 

D. EXAMPLE FOUR 

Finally, suppose that one wished to keep the final control error density at or 

below 1.500 errors/KSLOC and the final interface error density at or below 0.500 

errors/KSLOC. Furthennore, suppose that the verification process has a 

predetermined machine budget: spend not more than $200K./KSLOC on machine 

verification by the code stage, and not more than $500K/KSLOC on machine 

verification by the integration stage. Verification labor costs are unrestricted at 

design, but should be kept to a minimum at the code and integration stages. This is 

an example of tradeoffs being made at given stages (e.g., labor costs at code and 

integration stages) and tradeoffs being made across stages (e.g., constrained machine 

verification costs at code and integration stages). At the integration stage, policies 7, 

8,25,26,28,31, and 32 violated the control error constraint; policies 2, 16,26,28, 

30,31, and 32 violate the interface error constraint, and policies 11, 13, 19, and 21 

violate the machine cost constraint. At the code stage (not shown), policies 9, 10, 12, 

14, 15, 17, 18,20,22,23, and 24 violate the machine cost constraint; in addition, 

policy 1 dominates policy 27 and policy 3 dominates policy 29. As a result, the 

feasible policies are I, 3, 4, 5, and 6; they are all noninferior. If a hypothetical 

decision maker wanted to minimize control and interface errors among the 

noninferior choices, policy 5 would be the preferred decision, as shown below: 

u' (1) = perfonn inspection 
U'(2) = use both verification methods 
U'(3) = perfonn integration testing 

with: control error density = 0.180 errors/KSLOC 
interface error density = 0.Ql8 errors/KSLOC 

labor cost = $3800K/KSLOC 

machine cost = $300K./KSLOC 



www.manaraa.com

114 

While these four examples do not constitute a definitive evaluation, they 

serve to illustrate the potential value of taking quantitative analysis techniques from 

the forestry sector and applying them to software development. 

VI. CONCLUSIONS 

We find that metaphors help us see and understand; however, they can also 

blind us to other perspectives. The use of forestry as metaphor for software 

development has some advantages over the manufacturing metaphor. In particular, 

forestry emphasizes designing and monitoring to deal with many objectives, 

constraints, and changes. Inspired by applications to forestry, we propose to apply 

multistage, multiobjective optimization to software development. The examples 

illustrate a promising evaluative framework to: decide on alternative development 

actions based on their overall system impact (with respect to user-specified goals); 

direct future data gathering; and quantify the cost/benefits of individual and 

combined software development actions. 

REFERENCES 

[1] Anderson, A. et a1. "Systems Analysis for the Forest Sector," TIMS Studies 
in Management Sciences 21 (1986):1-23 

[2] Boehm, B. and P. Papaccio, "Understanding and Controlling Costs," IEEE 
Transactions on Software Engineering, SE-14 (1988):1462-1477. 

[3] Bollinger, T. and C. McGowan, "A Critical Look at Software Capability 
Evaluations," IEEE Software 8, 4 (1991): 25-41. 

[4] Deming, W.E., Out of the Crisis, Cambridge, Massachusetts: MIT Press, 
1982. 

[5] Gomide, F. and Y. Haimes, "The Multiobjective Multistage Impact Analysis 
Method: Theoretical Basis," IEEE Transactions on Systems. Man. and 
Cybernetics, SMC-14 (1984):88-98. 



www.manaraa.com

115 

[6] Harrison, T. and R. Rosenthal, "A Multiobjective Optimization Approach 
for Scheduling Timber Harvests on Nonindustrial Private Forest Lands," 
TIMS Studies in Management Sciences 21 (1986),:269-283. 

[7] Howard, R., Dynamic Programming and Marlwv Processes, Cambridge, 
Massachusetts: MIT Press, 1964. 

[8] Juran, J.M., Juran on Planning for Quality, New York: Macmillan, 1988. 

[9] Kellner, M., "Representation Formalisms for Software Process Modeling," 
Proceedings of the 4th International Software Process Workshop, Devon, 
UK, 1989. 

[10] Kennedy, J., Dynamic Programming: Applications to Agriculture and 
Natural Resources, Essex, England: Elsevier Publishers, 1986. 

[11] Lakoff, G., Women, Fire, and Dangerous Things: What Categories Reveal 
about the Mind, Chicago: Univ. of Chicago Press, 1987. 

[12] Lembersky, M. and K. Johnson, "Optimal Polices for Managed Strands: An 
Infinite Horizon Markov Decision Process Approach," Forest Science 21, 
2 (1975):107-122. 

[13] Luenberger, D., Linear and Nonlinear Programming, Reading, 
Massachusetts: Addison Wesley, 1984. 

[14] Morgan, G., Images of Organization, London: Sage Publications, 1986. 

[15] Rombach, H., "A Specification Framework for Software Process: Formal 
Specification and Derivation of Information Base Requirements," 
Proceedings of the 4th International Software Process Workshop, Devon, 
UK,1989. 

[16] Virginia Department of Forestry. Management Plan for Appomattox
Buckingham State Forest (Revised, 1986). By S. F. Warner. Charlottesville, 
Virginia, 1983. 



www.manaraa.com

TOOLS FOR MANAGING REPOSITORY OBJEcrs 

RJqiv D. Banker 
Carlson School of Management 

University of Minnesota 

Tomas Isakowitz 
and 

Robert J. Kauffman 
Stern School of Business 

New York University 

Rachna Kumar 
College of Business Administration 

University of Texas at Austin 

Dani Zweig 
Department of Administrative Sciences 

Naval Postgraduate School 

1. AUTOMATING REPOSITORY EVALUATION 

The P2st few years have seen the introduction of repository-based computer 

aided software engineering (CASE) tools which may finally enable us to develop 

software which is reliable and affordable. With the new tools come new challenges 

for management: Repository-based CASE changes software development to such an 

extent that traditional approaches to estimation, performance, and productivity 

assessment may no longer suffice - if they ever did. Fortunately, the same tools 

enable us to carry out better, more cost-effective and more timely measurement and 

control than was previously possible. 

Automated Metrics and the Management of an Object Repository 

From the perspective of senior managers of software development, there are 

three characteristics of the new technologies that stand out: 



www.manaraa.com

118 

(1) Productivity enhancement. Development tasks that used to require great 

effort and expense may be largely automated. This changes the basis for 

software cost estimation and control. 

(2) Software reuse. The repository acts as a long-term storehouse for the firm's 

entire application systems inventory. It stores it in a manner which makes 

reuse more practical. rrrms that hope to achieve high levels of reuse (on the 

order of 50%) must move from generally encouraging reuse to explicitly 

managing it. 

(3) Access to measurement. The repository holds the intermediate lifecycle 

outputs - of analysis and design, and not just the final software product. As 

a result, it becomes practical to automate the computation of the metrics 

which managers need in order to take full advantage of the new technologies. 

Over the last several years, we have been conducting a research program to 

shed light on how integrated CASE supports improved software productivity and 

software reliability through the reuse of repository software objects. We have found 

that successful management of this effort depends upon a number of factors: 

(1) the reliability of cost estimation for CASE projects, in an environment in 

which source lines of code are almost meaningless, and in which costs can 

vary by a factor of two depending on the degree of reuse achieved; 

(2) the extent to which software developers effectively search a repository to 

identify software objects that are candidates for reuse; 

(3) how software reuse is promoted and monitored; and, 

(4) the extent to which various kinds of software objects (especially those which 



www.manaraa.com

119 

are the most expensive to build) are actually reused. 

Managers can only hope to control these factors if they can measure them, 

and measure them in a cost-effective manner. In practice, this means automating as 

much of the analysis as possible. Fortunately, our research has shown that it is 

feasible to do so -- and to a far greater extent than we initially envisioned. By 

automating a number of useful repository evaluation procedures, we can provide 

senior managers with new perspectives on the performance of their software 

development operations. 

STRESS: ~r Iecbnologies Repository Evaluation Software Suite 

Our long-term study of CASE-based software development continues at 

several sites that deployed the same integrated CASE tools. Among them are The 

First Boston Corporation, a New York City-based investment bank, and Carter 

Hawley Hale Information Services, the data processing arm of a large Los Angeles

based retailing firm. These fmns allowed us to examine extensively and report on 

their evolving software object repositories. (For a more detailed discussion of these 

studies. see [1] and [2].) Their repositories were created with an integrated CASE 

tool called High Productivity Systems (BPS). HPS promotes modular design, object 

reuse and object naming conventions. It also enables the programming of 

applications that can be run cooperatively on multiple operating platforms, without 

requiring a developer to write code in the programming language that is native to 

each of the platforms. Instead. HPS simplifIes development, by enabling the 

developer to create software functions using a single fourth generation "rules 

language", which is then processed by a code generator and translated into whatever 

3GL source languages best suit the target platforms. 

The metrics which we, as researchers, needed in order to analyze software 

development were the same ones that the managers needed in order to control it. 

The primary insight which made the measurement practical was that all the 



www.manaraa.com

120 

information that was needed could be derived from information that was already 

stored within the repository. In cooperation with The First Boston Corporation and 

Seer Technologies (the original developers of BPS), we began to develope the 

conceptual basis of STRESS, Seer Technologies' Repository Evaluation Software Suite, 

a set of automated software repository evaluation tools. At present, STRESS consists 

of several automated analysis tools: 

(1) FPA, the automated Function Point Analyzer, 

(2) OPAL, the Object Points Analyzer, a new software cost estimation capability 

(3) SRA, the automated Software Reuse Analyzer, 

(4) ORCA, the Object Reuse Classification Analyzer. 

The remainder of this paper describes the STRESS tool set in greater detail, and 

discusses how it can make repository object management possible. 

2. FUNCTION POINT ANALYSIS 

The most commonly-used bases for estimating and controlling software costs, 

schedules, and productivity are source lines of code and /unction points. The function 

point methodology, which computes a point score based on the functionality provided 

by the system, is illustrated in FIgure 1. A standard weight is assigned to each system 

function, based on its type and complexity (e.g., 5 points for an output of average 

complexity), and the total count is multiplied by an environmental complexity modifier 

which reflects the impact of task-specific factors. 

Function point analysis, which measures the amount of data processing 

actually being performed by a system, has a number of advantages over counting 

source lines of code. Function points are language-independent, they allow for 

differences in task complexity between systems of similar size, and they can be 

estimated much earlier in the life cycle. For example, we can estimate function points 



www.manaraa.com

121 

during design, when we know what the system will do, but source lines of code can't 

physically be counted until the end of the coding phase. 

FUNCTION TYPES (FT) FUNCTION WEIGHTS (FW) 

INPUTS I FC • FT • Weights 

FUNCTION 
OUTPUTS COUNTS (FC) 

QUERIES 

INTERNAL 
FILES 

EXTERNAL 
INTERFACES 

COMPLEXITY 
MODIFIER (CM) 

FP • FC • CM 

FUNCTION 
POINTS (I'P) 

ENVIRONMENTAL COMPLEXITY 
(Range 0.8S - 1.3S) 

Figure 1: Function Point Analysis 

Despite these benefits and others, source lines of code remain the more 

commonly used measure. Function point analysis requires considerable and expensive 

manual effort [0 compute, whereas the counting of source lines is easily automated. 

For integrated CASE environments such as HPS, however, counting source lines of 

code is of relatively little use: much of the functionality of the system is represented 

in the CASE tool's internal representation, rather than in traditional source code. 

Our solution was to use that internal data in automating the function point analysis. 

The Function Point Analyzer (FPA) 

Function point analysis has been difficult to automate in traditional software 

engineering environments, because it requires detailed knowledge of the system being 

analyzed. For example, the analyst must know whether the module which will receive 

a data flow is considered to be part of the application system or external to it. This 



www.manaraa.com

122 

information may not be readily available, but it will determine whether the data flow 

count~ towards the system's function point total. Or, the analyst must know how 

many data elements are being passed within a given data flow, as this will determine 

the complexity, and hence the value, of that function point contribution. Or, the 

analyst may have to examine the code of a data input module to make sure that the 

designers didn't use the same module to also perform some output function (e.g., 

display prompts), which might count towards the function point total. Even if such 

information is available in the system documentation (as in principle it ought to be, 

and in practice it often is not), the number of such decisions which have to be made 

add up to a formidable amount of paper-chasing for the analyst. 

In an integrated CASE environment, most or all of this information will 

already be contained within the repository. The information which an integrated 

CASE tool must store about the system whose development it is supporting includes 

much or all of the information needed for the function point analysis. Different 

CASE tools will store the information in different ways. Figure 2 illustrates the 

mapping from the HPS repository representation of a software application to its 

equivalents in user functions. 

The objects inside the application boundary on the figure are those which 

belong to the system being analyzed, and the lines connecting them represent calling 

relationships. In traditional systems, the analyst must rely upon naming conventions 

to determine which modules belong to a system and which don't. The analyst may 

also have to examine the actual code so as not to be misled by, for example, software 

reuse or obsolete documentation. In the integrated CASE environment, each calling 

relationship between a pair of objects is stored in the repository as part of the tool's 

knowledge about the system. The Function Point Analyzer (FPA) can identify the 

objects which are part of the application system by searching the repository. 

Similarly, the repository has to know precisely what data elements are being 

passed to or from each and every object, in order to maintain the control and 



www.manaraa.com

consistency needed by an integrated environment. 

( moat) 

Output 
Typ/1 

I'······· 

123 

\ 
APPLICATION BOUNDARY 

Figure 2: Mapping HPS Object. to Function Points 

Determining the actual functionality of each object is the most 

implementation-dependent step, and the one that will vary the most from CASE tool 

to CASE tool. In HPS, the semantics of the 4GL Rules Language (a meta-language 

representing the objects and calling relationships that defme the functionality of an 

application) constrain each object [0 a well-defined purpose (e.g., controlling one 

window, or generating one report segment). Since all interactions between HPS 

objects are mediated by database 'views', and since all database views are in the 

repository, the Function Point Analyzer can read the type and complexity of each data 

flow directly from the repository. 

What all these capabilities of the Function Point Analyzer have in common 

is that they only depend on the information which HPS maintains, internally, about 

the system. At no point does it become necessary to examine the code itself. 



www.manaraa.com

124 

3. OBJECf POINT ANALYSIS 

Automating function point analysis gave us a good basis for tracking 

productivity improvements, both against the firms' old baselines, and against industry 

standards and industry leaders. Interviews with project managers, however, revealed 

that there were disadvantages to using Function Points as a basis for controlling 

individual HPS projects: 

(1) Function points collapse the benefits of enhanced productivity through 

CASE-based automation and the benefits of software reuse. 

(2) The shift to CASE was accompanied by a growing emphasis on early-life

cycle activities, particularly enterprise modelling and business analysis, and 

function points are more oriented towards design and post-design activities. 

(3) HPS developers and managers were used to working directly with HPS 

objects, and the mapping from objects to function points wasn't intuitive to 

the managers. For the first time, the mapping was close enough that 

managers could think of asking for better. What they wanted was a way to 

use the repository objects directly, as a basis for planning and control. 

In order to satisfy this demand, we had to first develop an estimation 

mechanism that was based on repository objects, and then demonstrate that it could 

equal function point analysis in predictive power and automatability. 

The Object Point Analyzer (OPAL) 

In an integrated CASE environment, the repository objects created in early 

phases of the software development life cycle will be high-level abstractions of those 

to be created during the coding/construction phase. The more information the 

repository contains about those early objects, the better our ability to make early and 



www.manaraa.com

125 

reliable predictions of project costs. As was the case with the function point analyzer, 

the specifics of the mapping will depend upon the implementation of the CASE 

environment. 

OPAL, the Object Point AnaLyzer, was developed as a cost estimation facility 

for the HPS environment. It differs from the Function Point Analyzer primarily in 

providing a direct mapping from HPS objects to cost estimates. 

Our interviews with project managers revealed that they were already using 

object-based cost estimation informally, assigning so many days of development effort 

for each type of object. Using those informal heuristics as a starting point, we used 

regression analysis first to give us more precise estimation weights and later to 

validate these results against actual projects. 

OPAL computes object points, a metric inspired by function points, but better 

suited to the lCASE environment. Object points are based directly upon the objects 

stored within the repository, rather than upon the interactions between those object. 

In HPS terms, object points are assigned for each WINDOW, for each REPORT, for 

each 3GL MODULE, etc. Instances of each object type can be simple, average, or 

complex, with the more complex objects receiving higher object point scores. The 

computation of object points is illustrated in FlgW'e 3. The objects depicted are part 

of a much larger application. Each object is assigned a complexity rating, based on 

empirically derived factors such as the number of objects it calls in turn, and then an 

object point score. 

Because the CASE environment limits the functionality allowed to each 

object type, this is a true measure of application system functionality as well as of 

programmer effort. It was practical to automate the classification of objects because 

of the information the repository maintains about each object. Like FP A, 0 PAL uses 

the repository's internal representation of the application system to determine which 

objects should be considered in the analysis, and what complexity ratings to assign 



www.manaraa.com

126 

each object. The corresponding effort estimates are taken from OPAL's object-effort

weight tables. These store standard cost estimates, derived through prior empirical 

analysis, for simple, average, and complex instances of each object type. 

RULEISET 

3GL COMPONENT RULE 
I 

I 

REPORTcust_ord 

I I 

I 

WINDOWcust_updte 

SECTIONcust_del SECTIONcust_OUtstg VIEWcust_order 

OBJECT TYPE COMPLEXITY DEFINING COMPLEXITY OBJECT POINTS 
CHARACTERISTICS CLASS 

WINDOW 3 VIEWS; 1 RULE I average 2 
REPORT 2 SECTIONS; 1 RULE simple 2 
3GL COMPNT complex 8 
... 

Figure 3: Illustration of Object Point Computation 

We used nineteen medium-to-large software development projects to test 

OPAL's cost estimates against those based on function point analysis. The two 

estimators were found to be equally good predictors, but managers found object 

points easier to use and to interpret. 

The results of the object point analysis can be presented in various ways, 

according to the requirements of the manager. Figure 4, for example, gives an object 

point breakdown of a subsystem, by object type. 



www.manaraa.com

160 

a 140 
B 
J 120 
E 

100 C 
T 80 

P 60 a 
I 40 
N 
T 20 
S 

0 
Enllli •• 

127 

Proc ••••• Window. R.port, 3GL Components 

OBJECT TYPES 

Simple Average 0 Complex 

Figure 4: Object Point Breakdown by 
Object Type for Subsystem "Reorder" 

4. SOFIWARE REUSE ANALYSIS 

Software reuse is known to be a major source of productivity gains in 

software development. Based on claims that are often seen in the popular press, 

some organizations routinely expect reuse levels of 30 to 50%. But such high levels 

of reuse require an environment in which software reuse is supported from both a 

technical and a managerial standpoint; appropriate incentives for developers to reuse 

software; and a measurement program that provides a feedback mechanism to tell 

developers how much their efforts are paying off. 

Object-based integrated CASE tools such as HPS provide the requisite 

technical support: they store software objects at a level of granularity which is far 

more conducive to reuse than traditional procedure-based software. They may also 

automate the mechanics of implementing reuse. HPS, for example, allows developers 

to reuse an object by simply adding a calling relationship to the repository. 

Measurement of reuse is also possible with CASE, especially when there is a 



www.manaraa.com

128 

business value of software reuse that is occurring. This is captured by SRA in a 

metric called reuse value. Reuse value is computed by translating the standard cost 

of the effort that would have been required, had the software objects that were reused 

been built from scratch. This is a highly useful metric because it helps managers to 

determine whether reuse pays off in development cost reductions. 

Management of Software Reuse 

SRA may be used to track software reuse within a given project, but such 

analysis generally comes after the fact. The main power of the tool is guiding the 

organization's long-term software reuse efforts. FIgUre 5, shown below, tracks our 

two sites' software reuse efforts over a comparable 2O-month period. 

FBe 

_ SOl. _. ~ ... Iep 

.O....------------~·O .. 

10 I lOG / .5 .. 

7~ 
1000 

// 30 .. 

,.--' 
500 / IS .. 

---' 

-- -+-_. 
• Figure Sa: Reuse and Repository Growth Figure 5b: Reuse and Repository Growth 

The striking result is that while repository sizes grew steadily throughout the 

observation period, reuse levels almost immediately stabilized around the 30% level. 

Further use of SRA enabled us to analyze these results. Since HPS maintains a 

repository history of each object, it was possible to determine who created and who 



www.manaraa.com

129 

repository that stores objects and their calling relationships. Such measurement is a 

prerequisite for accurate cost estimation. After all, software project cost estimation 

isn't going to be very reliable if we don't know whether to expect 30% reuse or 70% 

reuse of pre-existing software in a new system! 

The Software Reuse Analyzer (SRA) 

The repository-based architecture of HPS makes it practical, as we saw in the 

description of the function point analyzer, to query the repository to determine the 

extent of software reuse. This is accomplished through SRA, the Software Reuse 

Analyzer, which begins its analysis by creating a list of objects belonging to a given 

system. (This part of the analyzer's software was first developed for FP A and then, 

appropriately enough, reused in SRA.) We can also query the repository to 

determine how many times each object has been reused. rmally, the CASE tool 

maintains an object history which allows us to distinguish between internal reuse and 

external reuse. Internal reuse occurs when an object is created for a given application 

system and then used multiple times within that system. External reuse, on the other 

hand, occurs when the object being reused was initially created for a different 

application. The latter is more difficult to achieve, but is also more profitable. 

SRA was built to deliver a number of useful managerial metrics. For 

example, it reports on two related metrics that offer an at-a-glance picture of the 

extent of reuse in an application: new object percent, the percentage of an application 

that had to be custom-programmed, and reuse percent, the percentage of the 

application constructed from reused objects. As we pointed out above, managers will 

further wish to distinguish between internal and external reuse percentages, to gauge 

how effectively developers are leveraging the existing repository. SRA can decompose 

reuse percent into internal reuse percent and external reuse percent. 

A second important piece of information that managers will want is the 



www.manaraa.com

130 

reused each object, and for which applications. The results were enlightening, as 

suggested by F1gUles 6 and 7 below. 

...... S.,. 1000.1 AIM S.,. 1000.1 
12 r---------------------------, ,. 

12 

10 

I 

• 
• 
2 

0 
Fec CHH FIC CHH 

!2ia 'n .. ,n.' lieu.. 0 Eo, .. n,' II ..... 

Figure 6: Internal and External Reuse Figure 7: Reuse of Own Software 

There was a strong and expected bias towards internal reuse. Developers 

preferred to get as much leverage as possible from the objects of the system under 

construction, rather than search the other systems in the repository for reuse 

candidates. What was not expected, however, was that most of the instances of 

external reuse consisted of programmers reusing objects that they themselves had 

previously created. In other words, little effort was being made to search for reusable 

objects. If developers personally knew of a reuse candidate, they used it; if not, it was 

simpler to write a new object than to search the repository for a reusable one. This 

went a long way towards explaining why the growth in repository size, and hence in 

reuse opportunities, was Dot resulting in growth in the reuse rates. 



www.manaraa.com

131 

Figure 8 graphs the reuse levels of individual programmers against their 

overall output. 

R.uI. 
0.& 

0.7 
" 

" 0 

0.8 

0.5 

0.4 

0.3 

0.2 

" 
0.1 

• 
" 

" 0 

" 0 

0 
0 

• " 
"" " 

o " 
0 

" 0 
0 

0 
0 

0 
0 

0 00 
0 

c6~ 0 00 

o 

50 100 200 

Output (Rule Sets) 

FBC -- " CHH -- 0 

" 

o 

00 

0 

0 
0 

0 

400 

F"agure 8: 

Reuse and 

Programmer 

Output 

What the wide variation in programmer performance tends to obscure is the 

impact of the extremes. Software reuse analysis revealed that over 50% of the 

programmers at the research sites contributed no reuse whatsoever. On the other 

hand, the top 5% were responsible for over 20% of the objects in the repository and 

over 50% of the reuse. Only a few programmers were taking advantage of the 

substantial prodUctivity gains that software reuse offered. 

S. OBJECf REUSE CLASSIFICATION 

We conclude our overview of the STRESS toolset with a discussion of a tool 

which is still in the research and development phase: the Object Reuse Classification 

Analyzer. Whereas software reuse analysis measures the level of reuse achieved, 

object reuse classification enables us to determine the repository's reuse potential, and 



www.manaraa.com

132 

supports developers in achieving that potential. 

Repository Search for Reuse 

We observed that one of the striking results of the software reuse analysis 

was the propensity of developers to reuse familiar objects, rather than to search 

extensively for unfamiliar, but possibly superior, reuse candidates. A mature 

repository may easily contain tens of thousands of software objects, only a fraction of 

which will be familiar to anyone programmer or analyst. A developer who focuses 

on familiar objects (and most of the reuse we observed involved developers reusing 

software they themselves had created) will miss many software reuse opportunities. 

Our interviews with HPS programmers confirmed what others have already 

discovered: search is difficult. The high productivity of an integrated CASE 

environment such as HPS makes it faster to write a new object from scratch than to 

search an enormous repository for an existing object which is a close enough fit. 

(This is as true for the analyst trying to design a system which will take advantage of 

software reuse as it is for the programmer trying to fmd an object to perform a 

specific task.) A more extended search may pay long-run dividends, in the form of 

reduced maintenance costs, but this is an argument which programmers and project 

managers have rarely found convincing in the face of immediate schedule pressures. 

So, if we want developers to take advantage of the untapped reuse potential, we have 

to provide automated search support. 

Figure 9 illustrates the conceptual foundation of object classification analysis. 

We can think of the repository as consisting of a large number of objects within a 

"search space", with similar objects being closer together and dissimilar objects being 

further apart. The classification scheme is used to produce a similarity metric that 

determines the "distance" between repository objects. We can then give the system 

a description of the object we need, and ask for a short list of repository objects 

which are 'close' enough to the described object to be reuse candidates. 



www.manaraa.com

133 

Reuse Cluster Ideal Candidate Familiarity Bias 

x 
X 

X 

X X 
X X 

X X 
X 

Figure 9: Reuse Clustering 

Object Reuse Classification Analyzer (ORCA) 

ORC4, the Object Reuse Classification Analyzer, has three functions: 

classification support, development support, and repository evaluation support. 

1) Classification support. The classification scheme used by ORCA is an 

extension of Prieto-Diaz's faceted classification schema [4]. In such a 

schema, an object is classified along a number of dimensions - the facets -

and two objects may be 'close' to each other with respect to one or more 

facets. Figure 10, for example, illustrates a four-facet classification of a 

needed software module, and of two candidates for reuse. In this example, 

the functional similarities between the first component and the target object 

make it a better candidate than the second component, even though the 

second component was written for the target setting. 



www.manaraa.com

134 

Function 
Application 
Objects 
Setting 

NEEDED 

cross-validate 
personnel 
dates 
bank branch 

COMPONENT 1 

cross-validate 
inventory 
dates 
dept store 

COMPONENT 2 

purge 
payroll 
records 
bank branch 

Figure 10: A Four-Facet Oassification of Software Entities 

ORCA supports multiple classification criteria. Multiple sets of facets may 

be defined, instead of a single criterion. or a single set of facets, with 

different classifications applying to different object types and to different 

stages of software development. Each set presents a criterion by which to 

analyze the repository. This allows, for example, for the case of two objects 

which would be judged to be far apart during business design, but might be 

closely related during technical design. The technical functionality may be 

similar, even when the business application functionality appears to be 

unrelated. Based on this multi-faceted classification schema, we can compute 

a quantitative metric to determine functional similarity between objects. 

As the classification example suggested, an object classification scheme will 

use a combination of technical characteristics (e.g., object type, application 

system) and functional characteristics (e.g., purpose of module). The 

technical characteristics can be determined automatically, from information 

in the repository. For other facets, the developer can be prompted to choose 

from a list of options. The specific functionality-related classes and options 

may differ from one site to another, in which case the schema must be 

customized on the basis of interviews with software developers. 

2) Development Support. The key design principle is to reduce the 

developer's involvement in the screening stage to a minimum - to let the 

analyzer worry about fmding the potential needles in the haystack - and to 



www.manaraa.com

135 

provide a short enough list of candidates that the developer will be able to 

give serious consideration to each. The search for reuse candidates takes 

place in two stages: 

* 

* 

Stage 1, screening, involves the purposeful evaluation of a large set 

of object reuse candidates from the entire repository to produce a 

short list of near matches for further investigation. 

Stage 2, identification, enables the developer to examine individual 

objects more closely to determine whether there is a match in terms 

of the required functionality. 

When systems design is done well, it is very likely that a by-product of the 

effort will be a repository representation which can be matched to other 

existing repository objects at the time that technical design is completed. 

What remains is to ensure that there is a mechanism in place that enables 

a designer to test his design against the existing repository to determine what 

functionality might be reused as is, what might be adapted from very similar 

objects, and what needs to be built from scratch. 

3) Repository Evaluation Support. Besides helping developers to fmd and 

inspect candidates for reuse, ORCA may also be used to classify objects and 

evaluate the repository as a whole. On the one hand, it can be used to 

identify redundancy -- unexploited reuse opportunities. A mapping of the 

repository will identify "reuse clusters", sets of objects which are similar in 

functionality, and can probably be consolidated into a smaller number of 

objects. Figure 11 illustrates the results of such consolidation. 



www.manaraa.com

136 

250 

200 

150 

100 

50 

0 
Fields Rules Windows 

_ Unconsolidated D Consolidated 

Figure 11: Consolidating a Repository 
by Detecting Reuse Clusters 

Views 

Note that different types of repository objects are likely to benefit differently 

from such consolidation. On the other hand, such a mapping may identify gaps in the 

repository -- application areas in which developers will be less able to rely upon reuse 

support from the rest of the repository. 

6. TOOLS TO MANAGE THE REPOSITORY: A RESEARCH AGENDA 

Our current research efforts on repository object management software tools are 

focused on four primary tasks: 

(1) Implementation of the tools to support measurement will support longitudinal 

analysis of productivity and reuse. With the help of Seer Technologies, we 

are working to install the Function Point Analyzer and Software Reuse 

Analyzer at a number of firms, in the U.S., Europe and Asia. This will 

enable us to carry out a large-scale longitudinal study of development 

productivity and software reuse, that expands upon our pilot studies in these 



www.manaraa.com

137 

domains. As Kemerer [3] has pointed out, one of the most challenging 

problems facing software development managers is how to speed the move 

down the CASE development learning curve. In the absence of empirical 

results that estimate the learning curves that different firms have actually 

experienced, it will be difficult to provide much guidance as to the factors 

that enhance or inhibit firms to achieve better performance more rapidly. 

(2) We plan to further examine opportunities to extend the capabilities of the 

repository evaluation software tools to support other kinds of analysis. We 

have already done a significant amount of this work on an informal basis, 

through specially developed repository queries. These queries have enabled 

us to investigate aspects of the repository that help to explain the 30% 

technical cap on reuse that we observed in the early days of software 

development at The rtrst Boston Corporation and at Carter Hawley Hale 

Information Services. They also allowed us to determine which developers 

reuse software objects the most, and what kinds of software objects are 

involved. The results of such analysis has provided senior management at 

the firms whose data we analyzed with a fresh perspective on their software 

development operations. 

(3) The object points concept requires further empirical research to validate it for 

use in mllitiple settings. Additional field study work, with Seer Technologies 

and its clients, and with other CASE vendors and their clients, will enable us 

to apply and validate the object point metrics we have proposed for software 

cost estimation in repository object-based integrated CASE environments. 

This process will only be possible through the deployment and application of 

the Object Point Analyzer, OPAL. We expect that additional field study 

research will enable us to uncover the extent to which the object complexity 

weights may vary with different software development environments. 



www.manaraa.com

138 

(4) Additional conceptual and empirical research is required to support the 

completion of a full design document for object reuse classification. There are 

two research challenges related to this portion of our agenda. Weare 

currently performing a set of structured interviews with software developers 

who use HPS to identify unique classificatory facets. Meanwhile, we are 

working to construct the elements of the analysis method that, given a 

workable classification scheme, will enable software developers to identify 

potentially reusable objects. 

In this article, we have attempted to give the reader an appreciation of the 

kinds of measures which it is practical to derive from an automated analysis of an 

integrated CASE system. STRESS, the Seer Technologies Repository Evaluation 

Software Suite, enhances the ability of managers to control repository-based software 

development. It also makes it practical for us, as researchers, to perform data

intensive empirical analyses of software development processes. Software reuse, as 

this paper suggests, is of particular interest in this environment. 

REFERENCES 

1. Banker, R. D., Kauffman, R. J., Wright, C., and Zweig, D. "Automating Reuse and 
Output Metrics in an Object-based Computer Aided Software Engineering 
Environment: IEEE Transactions on Software Engineering, forthcoming. 

2. Banker, R. D., Kauffman, R. J., and Zweig, D. "Repository Evaluation of Software 
Reuse: IEEE Transactions on Software Engineering, forthcoming. 

3. Kemerer, C. F. "How the Learning Curve Affects CASE Tool Adoption", IEEE 
Software, volume 9, number 3, May 1992, pp. 23-28. 

4. Prieto-Diaz, R., and Freeman, P. "Classifying Software for Reusability: IEEE 
Software, January 1987, pp. 6-16. 

We wish to thank Mark. Baric, Gene Bedell. Vivek Wadhwa, Tom Lewis and Gig Graham, for access to 
managers. developers and data related to software development activities at Seer Technologies and its 
clients. We are also indebted to Len Ehrlich, Michael Oara and Tom Robben for assistance with various 
aspects of this research program. We offer special thanks to Charles Wright, currently on assignment with 
Seer Technologies in Switzerland; his contributions to the automated function point analysis and software 
reuse analysis facilities that are described in this paper helped to make the work. possible. 



www.manaraa.com

MEfHODOLOGICAL ISSUES IN FUNCTIONAL ECONOMIC ANALYSIS 

Thomas R. GULLEDGE 
Edgar H. SIBLEY 

George Mason University 
Fairfax, VA 22030-4444 USA 

TedK. YAMASHITA 
Battelle Memorial Institute 

2101 Wilson Boulevard, Suite 800 
Arlington, VA 22201·3008 USA 

I. PRELIMINARY REMARKS 

Functional Economic Analysis (FEA) is a methodology for modeling the costs, 

benefits, and risks associated with alternative investment and management practices. 

FEA is the primary decision support methodology for Department of Defense (DoD) 

Business Reengineering (BRE) analyses performed under the Corporate Information 

Management (elM) initiative. Since July 1991, functional managers have been required 

to prepare FEAs to support all investment decisions for automated information systems. 

This paper draws on several published FEA documents [5,12,35], and presents a 

discussion of a lOgical and consistent framework for performing FEAs. 

The main subjects discussed here relate to process flow modeling, economic 

analysis, resource modeling, and risk analysis. We see physical process flow modeling as 

the central component of FEA. The process flow model is used to describe a business 

process, and it is impossible to measure improvements associated with alternative ways 

of doing business if the costs of the current way of doing business are unknown. We 

assert that costs, benefits, and risks must be related to the activities of the process flow 

model. The implication is that cost and resource data of any process flow activity due to 

be changed must be collected and modeled. 

Since the DoD does not currently accumulate data by process activities, a 

complete change in cost analysis culture is being advocated. The DoD Comptroller's 

Unit Cost program is not the answer to this problem. While cost may be aggregated by 



www.manaraa.com

140 

output measure, more detailed data are needed to support FEA. A proper analysis 

requires that the variable cost of the activities that go into the production of output be 

measured. We believe that most FEA researchers and practitioners agree that process 

flow modeling, combined with activity-based costing, is the proper way to approach 

FEA. 

A theoretically correct FEA methodology should extend process flow modeling 

to include cost/resource modeling and risk analysis. While there are still many 

unresolved issues, we believe that the extension addresses some of the difficult problems 

associated with BRE and FEA. The cost estimator assigns costs, benefits, and risks to 

process flow activities, while the economic analyst projects these same factors over the 

planning horizon. However, since functional process flows are dynamic feedback control 

systems, modeling is a necessity. A theoretically correct approach must calculate 

resource l consumption as a function of workload, and as a second step, assign costs to 

the resources. Since resource cost is a time-dependent function of the quantity of 

resources consumed, the approach must permit the costing of the workload as the process 

flow and resource prices change over time. In addition, the approach must consider 

uncertainty in the resources consumed, the workload, cost, or any other model variable or 

parameter. 

II.INTRODUCfION 

A. Overall Strategy 

We focus on FEA details that we consider important and in need of further 

elucidation. These details relate to cost definitions, cost accounting, cost modeling, and 

risk analysis. We believe that the basic issues discussed here must be resolved if activity 

accounting methodologies are to be successfully merged with policy analysis.2 

1 Resources are personnel, computers, floor-space, etc. The model is used to project the 
changes in resource consumption as workload varies. This is a crucial point, especially 
since the DoD workload is projected to decrease dramatically in the 1990s. 

2 The basic framework for policy analysis is presented in [29]. 



www.manaraa.com

141 

A methodology is an open set of procedures which provides the means for 

solving problems. It is not a cook book of procedures that can be applied as an algorithm 

to every situation. Every PEA is different, hence the methodology can only describe the 

general problem solving framework. A methodologx should provide a strategy for 

problem solving in the absence of political or other restrictions; i.e., policy restrictions 

should be viewed as constraints on the methodology. As these constraints arise they 

should be analyzed and included, using the unconstrained methodology as a reference for 

benchmarking suboptimality. 

There has been some pressure to mandate "tools" to help the functional manager 

perform FEAs. While tools force standardization of PEA output, we believe that such 

discussions are premature. We have concentrated our efforts on defining the 

methodology, and we will consider automation once the methodology is understood. 

However, we note that the described methodology is consistent with the required IDEF3 

process modeling presentation format. 

B. What Is Functional Economic Analysis? 

Functional Economic Analysis is a methodology for modeling the costs, 

benefits, and risks associated with alternative investment and management practices. The 

approach is zero-based in that it considers new ways of doing business, managing 

organizations, and investing in information technology. That is, the tasks and activities 

of each organizational unit as well as all supporting technology and constraining 

regulations are potential decision variables. While savings can be realized from 

investments in information technology, it is generally agreed that most efficiency gains 

and cost savings accrue from optimizing the organization's business processes. 

Functional Economic Analysis is the primary decision support methodology for 

evaluating Business Reengineering (BRE) alternatives. The purpose of BRE is to change 

3 Since February, 1992, all DoD process models in support of Corporate Information 
Management initiatives have been required to be constructed using IDEFo' IDEF was 
developed for the U.S. Air Force's Integrated Computer Integrated Manufacturing 
Program (ICAM) [39]. IDEF, the nested acronym, stands for the ICAM Definition 
approach to system study. 



www.manaraa.com

142 

business processes and culture radically. This is accomplished by identifying and 

implementing new ways of doing business. The primary focus is on restructuring 

organizations and improving business methods and practices in accordance with 

customer demands. Thus technology, including information technology, plays a 

supporting role in the analysis process. 

m. POLICY ANALYSIS ISSUES 

Many of the FEA concepts are as old as the policy analysis discipline. The 

procedure has many of the characteristics of the seven step procedure described by Sage 

[32]: 

1. problem definition, 

2. value-system design, 

3. system synthesis, 

4. systems analysis and modeling, 

5. optimization and alternative ranking, 

6. decision making, 

7. planning for action. 

This seven step process is modified and extended for FEA by considering relevant issues 

in Cost Analysis (see, for example, [16]), Cost-Benefit Analysis (see, for example, [33]), 

Industrial Engineering, Activity-Based Costing (see, for example, [4]), Activity-Based 

Management (see, for example, [20]), Risk Analysis (see, for example, [13]), and 

nonlinear dynamic modeling (see, for example, [6]). 

IV. PROCESS FWW ISSUES 

As previously noted, FEA is process oriented. A basic tool for analyzing 

business processes is the industrial engineering process flow chart, as described in the 

Industrial Engineering Handbook [21]. Process flow charts are an essential component 

of FEA. This statement may seem somewhat extreme, since economic analyses are 

routinely executed in the absence of process flow charts. However, FEA has a process 



www.manaraa.com

143 

orientation; hence, the interactions among functional activities in the production of 

organizational outputs must be understood. The functional manager must see how the 

activities interact in order to determine cost changes, and the process flow chart is a 

proven method for identifying activities and pictorially describing how they interact. 

There are process flow aggregation issues that need additional study, but the 

rule-of-thumb is that the process flow is presented at an aggregation level that provides 

cost visibility and managerial cost control. We believe that the process flow 

disaggregation decision is difficult and not well understood in the context of PEA. 

Additional research through additional applications is needed. 

V. COST ISSUES 

A. Basic Cost Analysis Framework 

The assigning of cost to activities is the essence of PEA. Hence, an 

understanding of fundamental cost measurement and tracing issues is imperative for a 

proper understanding of FEA.4 However, those who understand these issues know why 

economic analysis on large scale systems is so difficult, especially within the DoD 

environment. 

We agree with the activity-based approach to PEA; however, we do not believe 

that activity-based costs are necessarily the only costs that should be considered within 

the context of PEA. The cost analysis methodology is dependent on the system under 

study as well as the decision time horizon. An analogous situation has been noted in 

manufacturing [1]. For example, activity-based methods have been used successfully in 

private industry to identify and monitor profitable product lines [10]. In many DoD 

applications, especially mission-critical applications, short-term capacity expansion may 

be much more important than profitability. For these scenarios, capacity and bottleneck 

costs may playa more important role in alternative selection than activity-based costs. 

4 The cost issues are well understood in Europe, especially in Germany. This history can 
be traced to the early work of Schrnalenbach [34], with many of the relevant issues 
summarized in [38]. Other significant works are by Riebel [31], and a more mathematical 
treatment provided by Stoppler and Mattfeld [36]. 



www.manaraa.com

144 

However, for most DoD business process applications of FEA, activity-based cost 

modeling will be central to the effort. 

Activities are "what" an organization does [28]. In more detail, activities are 

the things that organizational entities (e.g., managers, employees, etc.) do on a day-to-day 

basis. "Processing a report" or "inspecting a product" are examples of activities. "Tasks" 

are simply the steps taken in performing an activity. We prefer to think. of an activity as a 

process that transforms inputs into outputs. The tasks are the essence of the 

transformation process. 

As already noted, process flow modeling may be used to represent an 

organizational process pictorially. At one aggregation level, the process flow nodes 

could represent activities. An additional disaggregation would result in more detail, and 

the process flow nodes could be process tasks. Our current position is that it is probably 

not necessary to present cost at the task level, but an understanding of the tasks and their 

interactions is necessary in order to model cost at the activity level. 

If activities are modified or eliminated, as in the generation of FEA alternatives, 

then an obvious question is: How does cost change? This is a difficult question to 

answer. It involves activity-based cost modeling, a concept that is understood in 

manufacturing settings [27] but has not received much attention in the organizational 

reengineering literature. Later we add emphasis to additional important modeling issues, 

but prior to the modeling discussion it is necessary to defme cost. 

B. What Is Cost? 

This important question has no obvious answer. It is therefore the source of 

much confusion in the organizational reengineering literature. At the heart of the 

confusion are issues that describe the relationships between budgeted dollars and actual 

costs, and between financial and managerial accounting. These issues require careful 

consideration. 

We adopt the fixed and variable cost definitions proposed by Kaplan and 

Atkinson [22]: 



www.manaraa.com

145 

Fixed Costs are those costs unaffected by variations in activity level in a given 
period. They are expected to be constant throughout the period, independent of 
the level of outputs produced or inputs consumed. Of course, whether a cost is 
fIxed or variable will depend both on what factor is selected to predict cost 
variation and on the time period over which cost is expected to vary. Fixed costs 
can be thought of as short-run, perhaps annual, capacity costs; they represent 
the cost of resources required to perform a planned level of activities. 

Variable Costs fluctuate in response to changes in the underlying activity level 
of the fIrm or in response to change in the underlying scale of activity. 
Materials, some components of labor (both direct and supervisory), overhead, 
and marketing costs are typical examples of short-term variable costs. Some 
short-run variable costs, such as direct materials and direct labor costs, will 
increase proportionately with the level of output. Other short-term variable 
costs, such as the salaries of intermediate-level supervisory personnel, may vary 
in steps, such as when an extra shift is added or subtracted, or in some other 
disproportionate fashion, with the level of output. 

Some would argue that these definitions are not sufficiently precise. For example, the 

neoclassical defInition of cost implies optimality; i.e., the minimum cost of producing 

certain outputs with given input prices and technology [24]. This economic defInition is 

precise, and any cost modeling approach should search for minimum cost, but none of the 

existing FEA approaches explicitly model cost as frontiers. We do not address these 

more theoretical issues in this paper. 

It is important to note that the above defInitions are different from the cost 

classifIcations most often used by cost accountants: direct and indirect costs. Fultz [17] 

defInes a cost objective as any function for which cost is accumulated, and a direct 

charge is one that is incurred for a specific cost objective. Typical cost objectives are 

products, services, etc. As noted by Fultz (see page 9), both the Federal Procurement 

regulations and the Armed Service Procurement regulations provide a definition of 

indirect costs: 

An indirect or overhead cost is one which because of its incurrence for common 
or joint objectives is not readily subject to treatment as a direct cost. Minor 
direct cost items may be considered to be indirect costs for reasons of 
practicality. After direct costs have been determined and directly charged to 
contracts or other work as appropriate, indirect costs are those remaining to be 
allocated to several classes. 



www.manaraa.com

146 

By our accepted cost deflnitions, direct costs are probably variable; although there may 

be parts of direct costs that are fixed. Indirect costs clearly contain large segments that 

are variable. These are the cost that accountants label as semi-variable. The challenge 

facing FEA practitioners is to analyze budget and Unit Cost data that are either total 

expenditures or classifled into direct and indirect categories, and model the cost of 

processing activity workload as flxed and variable cost. The expansion of this concept 

permeates the remainder of this paper. 

C. Financial and Managerial Accounting 

The issues relating to accounting systems are critical to understanding the FEA 

process. These issues are discussed in some detail by Kaplan [23]. The issues were also 

discussed in IS], but it is important that the basic issues be reiterated. 

Financial accounting data are compiled to satisfy the needs of the organization's 

external constituents; e.g., stockholders, taxing authorities, contract auditing agencies, 

etc. These data are not compiled with managerial decision making in mind. If flnancial 

accounting data are used to support organizational decisions, distortions are likely to 

occur. 

The main point of this discussion is related to the cost deflnitional issues already 

discussed. If a manager makes a decision that alters any activity relevant to the 

production of organizational output, then cost should change. By deflnition this is 

variable cost. As noted, it is reasonable to assume that direct costs are variable. If direct 

costs comprise a large portion of total cost (Le., 90% or more). then direct costs are 

probably a good approximation for variable costs. 

An example of cost distortion was uncovered in a conversation that one of the 

authors had with an IBM executive at a recent DoD workshop on cost/performance 

measurement [8]. IBM produces a number of products at one of its manufacturing 

facilities. Using traditional cost accounting methods, some of these products are 

indicated as being more profitable than others. Two of these products were examined in 

detail. Product 1, a heavy consumer of computer resources in the production process, 



www.manaraa.com

147 

was believed to be very profitable. Product 2, a light consumer of computer resources in 

the production process, was believed to be significantly less profitable.s 

For accounting purposes, computing resources were treated as an indirect cost, 

and they were allocated to the products in proportion to the number of units produced. 

Note, computing costs are clearly variable as they are described in this example, but the 

allocation procedure does not treat them as variable. When management properly traced 

computing costs to the products that were incurring the costs, the distortion was 

discovered. The relative profitability of the two products was reversed; i.e., product 2 

was really the more profitable product. 

The distortions occur when indirect costs are a large proportion of total costs 

and semi-variable costs are significant. Under this scenario, if direct costs are used to 

approximate variable costs, the approximation is often poor since large portions of 

variable costs are not properly considered. In the early years of manufacturing, direct 

costs were a large percentage of total cost, hence financial accounting data could be used 

in managerial decision making with minimum distortions. However, the trend in defense 

industry indirect costs has been steadily increasing. In fact, in many industries indirect 

costs are as high as 50% of the total (see, for example the discussion in [25]). 

The above discussion is important for many obvious reasons, and one less 

obvious reason. The DoD Comptroller's Unit Cost program reorganizes budget data into 

direct and indirect categories by output measure. This is a major limitation of using the 

unit cost data to support PEA development. The relevant data for PEA are variable costs 

by the activities that go into the production of an output measure. 

VI. MODELING ISSUES 

Modeling is probably the least understood of all of the PEA issues. Our 

experience has been that modeling means different things to different PEA practitioners. 

The purpose of this section is to Clarify some of the issues relating to process, cost, and 

resource modeling. The intent is to relate the types of models to activity-based costing. 

S A similar example is presented by Strassmann [37, p. 71] 



www.manaraa.com

148 

A. Models and Process Flows 

problem: 

Giordano and Weir [18] note the following about systems and the modeler's 

A system is an assemblage of objects jOined in some regular interaction or 
interdependence. The modeler is interested in understanding how a particular 
system works, what causes changes in the system, and the sensitivity of the 
system to certain changes. He or she is also interested in predicting what 
changes might occur and when they occur. 

The above scenario is identical to that faced by the functional manager with a BRE task. 

Business reengineering is a complex process. Complex organizations are 

characterized by many inputs and outputs. The process of transforming inputs into 

outputs may span a number of interconnected activities with many causal relationships. 

Presumably, as work flows through the activities the inputs are applied in such a way that 

value-added is generated; the Objective of FEA and BRE is to understand and measure 

this value-added. 

As previously mentioned, it is possible to provide a pictorial representation of a 

particular business process with a process flow chart. The process flow chart may 

provide some insight into how inputs interact with outputs at the activity level, but FEA 

requires quantification of costs, benefits, and risks. The process flow chart does not 

provide this information. To quantify costs, benefits, and risks for the function; the 

decision maker must quantify costs, benefits, and risks at the activity level. 

This requirement should not be trivialized. The function is complex, data are 

scarce, and resource requirements and availability change over time. It is a rare decision 

maker who can report activity cost or resource consumption at a particular point in time, 

much less project these numbers one year into the future. The relationships among the 

activities must be analyzed in a systems analysis context, since it is impossible for the 

functional manager to analyze the complex system relationships subjectively. It would 

appear that some form of simplification is required. 

A model is a selective abstraction of reality. The purpose of a model is to 

simplify and explain, and there are many types of models. For example, the physical 

process flow chart is a pictorial model of a function. It simplifies the system in that it 



www.manaraa.com

149 

stresses the importance of critical activities and interrelationships, while suppressing 

those activities that are relatively unimportant.6 

IDEF is another type of pictorial model. IDEF provides a logical representation 

of how activities interact; however, IDEF stops short of predicting costs, resources, and 

benefits at the activity level. Modifications of IDEF allow the functional manager to 

attach (as an attribute) costs, benefits, and risks at the activity level, but one still has to 

predict costs, benefits, and risks at the activity level. This idea is discussed below in 

detail. 

B. Quantitative Decision Models 

Since the functional manager must quantify costs, benefits, and risks, a 

quantitative decision model is required. Each decision model contains decision variables, 

and the process of making a decision is equivalent to assigning numbers to the decision 

variables. The task of the modeler is to understand how these decision variables relate to 

costs, benefits, risks, or any other important criteria. 

If the relationships among the decision variables and the decision criteria can be 

represented with a system of equations, then one has a mathematical modeJ. For most 

complex systems (e.g., business process flows), it may be possible to specify equations 

but impossible to solve them in closed form; hence simulation will probably be required. 

In order to predict the costs, benefits, and risks associated with a complex system, a 

simulation model may be the only practical solution.' 

6 One could argue that all activities are important from the point of view of producing 
final output. Perhaps they are; however, that is not the point of this discussion. Many 
variables impact a particular decision; so many that it is impossible for the manager to 
understand how they relate to one another. The basic idea in modeling is to identify those 
variables that have the most impact on the decision criteria while judiciously suppressing 
those that have little impact. In this sense some variables and/or activities may be more 
important than others. 

, This is not the appropriate forum for a lengthy discussion of simulation models, nor 
model classification. A good discussion of the relevant issues is provided in [15]. 
Chapter 1 is particularly relevant for this discussion. 



www.manaraa.com

150 

C. Simulation Models, Process Flows, and FEA 

Here we combine the apparent disparate parts and discuss the logic of a 

simulation-based approach. We also explain how this approach extends the activity

based costing work initiated by the Corps of Engineers [11]. 

The baseline process model describes the current systemic relationships, and it 

also predicts the costs, benefits, and risks associated with maintaining the baseline in 

future years. The key word is prediction; that is, the FEA assigns costs, benefits, and 

risks to activities over time. FEA is dynamic. 

The above assignment or tracing problem could be solved in a number of ways. 

For example, the functional manager could subjectively assign cost to a particular activity 

and in many applications a subjective assignment may be sufficient. Consider the case of 

a data processing center that provides services for several business processes. The center 

may not accumulate cost by process; i.e., the center has a budget that does not provide 

visibility by process. The manager may have to detewine subjectively the proportion of 

data processing services to be traced to each process. However, this is not the same as 

guessing. The assignment is based on expert judgment, group consensus, Delphi, or 

whatever subjective methodology is deemed appropriate. If the subjectively estimated 

data is used as model input, the estimate can be refined over time as the analyst observes 

how sensitive the model output is to the estimated input. 

Additional accuracy and believability can be obtained by collecting data on the 

uncertain activities. This is the logic of the activity-based costing (ABC) approach. The 

functional manager collects data on costs, benefits, and risks at the activity level. This 

data, collected mainly by interview with historical support, requires a new way of 

thinking by the functional manager, since the DoD does not currently collect data at the 

activity level. However, if the functional manager is successful, the benefits are obvious. 

Much insight is gained about baseline operations and visibility into nonvalue-added 

activities is obtained. 

The ABC approach is superior to subjective estimation, but it stops short of 

analyzing bottlenecks, feedback, or other sensitive cost drivers within the process flow. 



www.manaraa.com

151 

This point becomes particularly important when alternative process flows are analyzed. 

It is impossible to collect historical data on processes that do not currently exist, yet the 

FEA methodology requires that costs, benefits, and risks be assigned to alternative 

activities as well as the baseline. 

The Byrnes et al. [5] approach solves this problem by using a dynamic 

cost/resource8 simulation model. Hence, there is a third way to provide data at the 

activity level - as the generated output of a simulation model. The use of a model 

provides insight into baseline process flow relationships and allows the analyst to 

perform sensitivity analyses on critical parameters. In addition, it is almost impossible to 

quantify risks without a model. 

For analyzing alternative process flow configurations, a model is a necessity. 

The ABC approach advocates zeroing out nonvalue-added activities, and perhaps 

assigning costs to new investment initiatives. To compute the average total cost of 

processing the baseline workload with the alternative process flow configuration, the 

functional manager multiplies the average unit cost by the average workload and sums 

the estimated costs across all activities in the process flow. 

The modeling approach extends the ABC approach in the following way. If 

some current activities are eliminated, and some new activities are added; the costs and 

risk may be altered for every activity in the process flow. That is, cost accumulation is 

nonlinear, and new technologies applied to activities may cause bottlenecks at other 

activities. Since the alternative system does not exist, the only method for analyzing 

alternative system bottlenecks and feedback is to use a resource model. Hence, a resource 

model is useful for predicting costs and risks for the activities in the alternative process 

flow. 

In addition, the simulation model can be used to project costs, benefits, and risks 

over time. It is possible to apply ABC methods over time by linking a sequence of 

8 In this document we shall use the term resource nwdel to mean any simulation model 
used to predict resources, cost, schedule, or other relevant economic variables. We note 
that the simulation model could be discrete or continuous (see [15], chapter 1). The 
advantages and disadvantages of each type of model are discussed in the section on risk 
analysis. 



www.manaraa.com

152 

spread sheets; perhaps one for each year in the planning horizon. However, the basic 

problem still exists - PEA process flow charts are a representation of a nonlinear dynamic 

system, and they should be analyzed as such. 

We are not criticizing the ABC approach. In fact, some ABC work must be 

completed before a resource simulation model can be constructed and for many functions 

a simulation model may not be necessary. For example, consider a scenario where the 

baseline process model, augmented with activity-based costs, indicates that savings 

potential is low. Why then incur the additional cost of constructing a model? BRE is a 

methodology for identifying major9 savings. The extraction of minor savings is really a 

Total Quality Management issue. 

D. Conclusions 

The PEA methodology is characterized by three major tenets: 

1. process flow analysis, 

2. activity-based costing, 

3. resource modeling that includes risk analysis. 

It is our belief that resource models are a necessity. The estimator assigns cost to 

activities while the analyst models cost at the activity level. The addition of modeling 

extends PEA from the realm of cost estimating to the realm of economic analysis. 

VII. COST MAPPING ISSUES 

A. What Are the Issues? 

Oil the surface, the issues seem Simple. The output of a PEA must map in two 

directions. First, the functional manager must map the PEA results to an agreed-upon 

standard cost breakdown structure. This is defined by the Institute for Defense Analyses 

(IDA) with its Functional Economic Analysis Model. lO 

9 We make no attempt to define what is meant by major savings. In their BRE efforts, 
James Martin and Company uses the term lOx savings. The assignment of a dollar value 
to the term major is obviously a DoD policy decision. 

10 The IDA model provides a standard format for displaying PEA output. The IDA model 
summarizes PEA data in a spreadsheet for a presentation of the risk adjusted discounted 



www.manaraa.com

153 

The second mapping that must be addressed by the functional manager involves 

DoD budgets. Projected savings (if realized) imply budget reductions. Since the FEA 

identifies where savings occur and their dollar amount, the manager must map the FEA 

output to the organization's budget. These mappings are not well understcxx:l, and 

additional research is needed here. 

B. Mapping to the IDA Model 

The IDA cost structure is very general since it was designed for application to 

any function. Cost is segregated into direct and indirect categories, and it is the task of 

the functional manager to display the function's cost according to the IDA structure. 

FEA output summarizes cost into fixed and variable (as opposed to direct and 

indirect) categories. A portion of indirect costs is variable; hence, costs must be 

reclassified prior to mapping FEA output to the IDA model. The most popular 

methodology for addressing this problem is what accountants call the account 

classification procedure11 (see, for example, [22], pp. 94-97). 

The account classification procedure requires that the cost analyst classify each 

category of cost as either fixed or variable. In effect, the analyst subjectively maps the 

direct and indirect costs onto the fixed and variable costs; however, this mapping can be 

extremely difficult. 

In fact the problem is more difficUlt than the standard account classification 

procedure, because the mapping is in the reverse direction. Instead of determining what 

parts of direct and indirect costs are fixed and variable, the analyst must determine how to 

reconstruct direct and indirect costs from the fixed and variable FEA output. It is 

impossible to understand the reverse mapping without first understanding the forward 

mapping. 

One final issue needs to be discussed with respect to this mapping problem. If 

the analyst estimates cost at the activity level using the same cost structure as the IDA 

cash flow of the projected savings associated with each alternative. The IDA model also 
permits risk analysis over the elements of the generic cost structure. 

11 Other methods for estimating fixed and variable costs are discussed in [2]. 



www.manaraa.com

154 

model, then there is no mapping. Total cost is found by summing the cost elements 

across the activities. Unfortunately, as previously discussed, as activities are altered in 

the formation of FEA alternatives, distortions may occur. The nature of the distortion 

cannot be stated because it varies from function to function. If a function has high 

indirect costs, the distortion may be considerable; but if most costs are direct, the 

distortion may be slight. 

C. Mapping to DoD Budgets 

The standard DoD budget does not display costs by direct and indirect nor 

variable and fixed categories. The new DoD Unit Cost budget presents the unit costs 

allocated to predefined output measures, but this budget is still not the answer to the FEA 

mapping problem. There are three major issues that relate to Unit Costs. 

First, the Unit Cost boundary does not always agree with the boundary of the 

function under study. When the boundaries do not coincide, the functional manager 

either ignores the Unit Cost boundary and collects supplemental data or abides by the 

Unit Cost boundary and the FEA is constrained. 

Second, the Unit Cost outputs do not always agree with the outputs defined by 

the functional manager. In many ways this is uninteresting, since a modeling approach to 

FEA does not directly use cost by output. The relevant costs for modeling are the costs 

associated with the activities that produce functional output. 

Third, the mapping problems still exist. The FEA output should project costs in 

variable and fixed categories. The IDA model accepts direct and indirect inputs, but the 

Unit Cost structure is not the same as the IDA cost structure. 

In our opinion, Unit Cost is an important budgeting tool, but it complicates (as 

opposed to simplifying) the FEA process. However, if functional managers are forced to 

use Unit Costs in constructing their FEAs, we believe that a mapping is possible. This is 

certainly an area where additional research is needed. 



www.manaraa.com

155 

VllI. RISK ANALYSIS ISSUES 

A. Definition of Risk 

In the decision analysis literature a clear distinction is made between risk and 

uncertainty. In any decision problem, three assumption can be made regarding the true 

state of nature, 4>. First, if 4> is known with certainty, the decision is straightforward. This 

situation is called decision making under certainty. Second, if there is total ignorance 

about the value of 4>, we are said to be making a decision under uncertainty. The final 

assumption characterizes most management decisions. If we can assess a probability 

distribution for various values of 4>, the situation is classified as decision making under 

risk. 

The above taxonomy is useful and precise, but unfortunately it often confuses 

managers when they are trying to understand and manage risk. For the typical manager, 

risk results from uncertainty about the value of a decision or process variable; e.g., cost 

or schedule. The manager may be able to characterize this uncertainty by providing an 

interval estimate or even by specifying a probability distribution. The confusion is 

caused by the unfortunate use of the word, uncertainty. As used by the risk manager, it 

does not imply ignorance of the state of nature. Henceforth, we define risk as uncertainty 

in the value of a decision variable or a parameter. If the decision variable is cost, then we 

are describing cost risk. If the uncertainty is. associated with evolving a new technology 

to provide a greater level of performance, then we are describing technical risk. 

This approach to risk classification appears to be consistent with the risk facets 

advocated by the Defense Systems Management College [13]. DSMC identifies five 

facets of risk that are necessary to segment and manage the cost, schedule, and 

performance issues faced on a project: 

1. Technical (performance Related), 

2. Supportability (performance Related), 

3. Programmatic (Environment Related), 

4. Cost, 

5. Schedule. 



www.manaraa.com

156 

A similar classification could be designed for PEA, but the primary risk facets appear to 

be technical and cost. 

For the definitions of Risk Analysis and Risk Management, we borrow from 

Charette [7]: 

The process of identification, estimation, and evaluation of risk is called risk 
analysis. Risk analysis is used to identify potential problem areas, quantify risks 
associated with these problems, and generate alternative choices of actions that 
can be taken to reduce risk. 

The planned control of risk and mOnitoring the success of control mechanisms is 
termed risk management. Risk management is involved with making a decision 
about the risk(s) after it has been analyzed. Four elemental tools are needed to 
effectively apply risk management. They are (a) standards against which 
performance can be measured; (b) information to monitor actual performance; 
(c) authority to make required adjustments and corrections when they are 
needed; and (d) competence to implement the best solution from available 
alternatives. 

The above definitions are consistent with the Business Reengineering process. Risk 

analysis is associated with the FEA component of BRE, and risk management is mainly 

associated with the implementation and monitoring component of BRE. 

B. Primary Risk Analysis Issues 

analysis: 

There are at least three issues that need additional study in the area of risk 

1. Where should the risk analysis be performed? Should it be performed at 

the disaggregated activity level, or should it be performed at the more 

aggregate 'total cost' level? 

2. How should risk be computed? Are analytical methods appropriate, or is 

Monte-Carlo simulation required? 

3. What is the appropriate risk probability distribution? 

Each issue is now discussed. But to motivate the discussion, several items need to be 

clarified. By our definition, risk is synonymous with probability. We assume that the 

analyst provides sufficient information about the estimated random variable, so that an 



www.manaraa.com

157 

interval estimate may be developed. This implies that the analyst has to provide the 

following information for each resource or cost estimate: 

1. A measure of central tendency; e.g., the expected value of the estimate, 

2. An estimate of the minimum and maximum of the random variable, 

3. A measure of dispersion; e.g., the variance or standard deviation. 

The total risk associated with a baseline or alternative cost model requires a combining of 

the individual risk distributions to estimate the risk distribution of total cost. 

Given the above, the classification of risk into different types is less meaningful. 

For example, it has been noted that there are two types of risk that should be considered: 

a) implementation risk associated with implementing new technology through a selected 

alternative, and b) uncertainty in cost estimation. For our purposes the two types of risk 

are treated the same as long as the risk probability distribution can be specified. If it is 

impossible to specify the risk probability distribution, the uncertain variable is not 

considered in 'FEA. 

C. Where Should the Risk Analysis Be Performed? 

The obvious answer is that the analyst should disaggregate the process to the 

appropriate level to understand the risk. If this means that risk must be modeled at the 

task level, then so be it. If the aggregation level is too high, critical high-risk activities 

may not receive appropriate attention in sensitivity analyses. However, there is an equal 

danger in disaggregating to low levels. Resource managers often have difficulty in 

estimating the required input data (Le., mean, min. max, and variance) at low levels. 

Hence, much analyst judgment must go into the selection of the appropriate level. 

The general consensus is that the risk analysis should be done at the activity 

level, but the appropriate activity disaggregation level is problem specific. A good rule

of-thumb is to only disaggregate on activities that are controllable; Le., if the decision 

maker has no control over an activity, model the risk of that activity at the highest 

possible level. 

A second rule-of-thumb involves the identification of the most critical 

sensitivity parameters. For example, in many FEAs, the wage rate is a parameter that 



www.manaraa.com

158 

affects almost every activity. In deciding how far to disaggregate, one would certainly 

want to disaggregate to a level that provides visibility of the sensitive parameters; e.g., 

workload bottlenecks, error rates, high cost inputs, etc. 

Of course, the analyst must consider data a"ailability, data believability, and 

interview time required. These issues must be considered relative to savings potential in 

deciding how far to disaggregate the process flow activities. If savings potential is low, a 

good rule-of-thumb is to model risk at a high aggregation level. For those areas of the 

process flow model that management controls and believes that significant savings are 

possible, disaggregation would seem to be appropriate. The implication of this 

discussion is that many of the modeling issues relating to risk analysis require judgment 

in modeling. There is definitely an art component in what we are advocating. 

D. How Should Risk Be Computed? 

It is our hypothesis that the method used to compute risk is not a major issue. 

We do however agree that a model of the organization's process flow is necessary to 

provide meaningful resource and cost projections and that this model will have to be 

some type of simulation model; i.e, the process flow model is a nonlinear feedback

control system. For any simulation model, either discrete or continuous, the risk analysis 

output is a technicality. The difficult part of the analysis is understanding the 

organization's process flows. 

Once the simulation model is constructed the following three-step procedure 

could be used for risk analysis: 

1. Estimate the partial derivative of the measure of effectiveness with respect 

to each parameter. Rank the parameters according to sensitivity; i.e., the 

most sensitive parameter is ranked at the highest level. 

2. For those parameters that are most sensitive, try to assess their uncertainty. 

3. Those parameters that have high sensitivity and high uncertainty are the 

primary candidates for risk analysis. 

Again, this three-step procedure re-enforces the idea that there is an art component to 

risk analysis. 



www.manaraa.com

159 

There are issues that relate to the choice of a simulation methodology. Discrete 

simulation provides much flexibility in modeling process flows, and the risk analysis is a 

natural by-product of the simulation. However discrete simulation can require significant 

computer resources, especially in performing sensitivity analyses. The number of runs 

required for a statistically significant estimate of the mean response is large, and the 

number of runs required for risk analysis may be very large. 

Continuous simulation requires little computing, but it provides less flexibility, 

and the risk analysis is not a natural by-product of the simulation. The risk analysis is 

approximate, and the error in approximation is an issue that has not been fully explored. 

E. What Is the Appropriate Risk Probability Distribution? 

Given the nature of FEA data, this does not seem to be an issue of overriding 

importance. However, the issue can be of extreme importance in simulation modeling. 

For example, in discrete simulation, it is easy to generate pseudo-random deviates from 

any distribution for which the inverse cumulative distribution function can be represented 

in closed form. For other distributions, the process can be more difficult as well as time 

consuming. The amount of computational effort required is also problem specific; Le., a 

p~ flow network with 100 activity nodes will require more effort than an aggregate 

cost structure with 15 cost categories. 

The Byrnes et al. [5] approach avoids the discrete simulation problems by using 

an approximation to the sum of beta distributions.12 This approximation assumes that 

sums of beta distributions and products of beta distributions may be approximated as beta 

distributions. Note, that this is not the same as saying that sums or products of beta 

variates are beta distributed. The wording is crucial, since 'fitting' a beta distribution to a 

resulting sum of random variables is not the same as requiring that the sum of beta 

variates have a beta distribution. 

The approach is clearly an approximation. For the problems examined to date, 

the approximation appears to yield satisfactory results, but more work is needed in 

12 This approximation approach was developed, coded, and tested by Henry A. Neimeier 
of The MITRE Corporation. 



www.manaraa.com

160 

analyzing its accuracy. However, the beta distribution is extremely flexible in that it 

provides a good fit to most classical probability distributions. One major exception is the 

log-normal distribution, which requires a transformation prior to fitting the beta 

distribution. 

Of course, a major advantage of using the approximation is that discrete 

simulation is no longer required to perform the risk or sensitivity analyses. For the beta 

risk distribution assumption, the analyst can analytically estimate total system risk by 

tracking four parameters at the activity level: the mean, the maximum, the minimum, and 

the standard deviation. The primary disadvantage is that the properties of the 

approximation are open research questions. 

F. Conclusions 

Much progress has been made in understanding risk at the activity level, but 

additional work is needed. The relevant research issues relate to the appropriateness of 

the beta distribution and the accuracy of the risk approximation. Other general research 

issues relate to discrete versus continuous simulations of the process flow models. If 

discrete simulation is selected, the most important research issues are relate to 

convergence and statistical significance. 

IX. RElATIONSHIP TO THE ABBREVIATED METHODOLOGY 

The abbreviated approach13 is a results oriented methodology that is designed to 

force a decision with respect to a particular issue; e.g., a migration decision to establish 

the elM Furu:tional Baseline. The procedure is often discussed as a specific application 

ofFEA. 

The main strength of the procedure is that it forces a quick decision; i.e., it jump

starts the elM process and minimizes "analysis paralysis." The main weakness of the 

procedure is that it is based on limited analyses of business functions or processes. In 

short, the abbreviated methodology is results oriented, and it may lead to suboptimal re-

13 This approach has been called the abbreviated FEA by others. We avoid this 
terminology because the approach does not have the characteristics associated with FEA; 
Le., process flow analysis, activity-based costing, and resource modeling. 



www.manaraa.com

161 

engineering implementations in the long-run. It should be noted, however, that this issue 

should be of little concern in the definition of a PEA methodology. The abbreviated 

procedure is a separate type of analysis, and as long as the functional manager 

understands its purpose, strengths, and limitations, then it could be carefully used to 

support specific decisions. However, we believe that the elM migration decision should 

be contained within BRE alternatives. Hence, as BRE policy is defined and as BRE 

management teams gain experience in performing PEAs, we hope that the abbreviated 

procedure is abandoned. 

The suboptimality of the abbreviated procedure can be easily understood within 

the context of the elM migration decision. Assume n potential migration alternatives and 

a target alternative selected by the PEA component of a BRE study. The optimal 

migration alternative is the intermediate state that minimizes the cost of achieving the 

BRE target. That is, the migration decision and the reengineering decision represent an 

optimal decision set, hence they should be selected so that they are consistent with 

Bellman's principle of optimality [3], as described in [26]: 

An optimal set of decisions has the property that whatever the first decision is, 
the remaining decisions must be optimal with respect to the outcome which 
results from the first decision. 

This principle is intuitive when considered within the context of the migration decision. 

Suppose candidate system # 1 is selected as the migration system, and the elM 

functional baseline is established, based on system # 1. A BRE study is then initiated, 

and after analysis a BRE alternative is selected. Assume, at this point, it is noted that the 

implementation of the BRE alternative would have been less costly and/or more efficient 

if system # 2 were selected as the migration system; i.e., the decision of selecting system 

# 1 violates the principle of optimality. 

The main point of the discussion is as follows. In the absence of constraints 

(political or otherwise), the migration system should be considered in the BRE analysis. 

However, the decision process is constrained. If the constraint is that a quick decision 

must be made, and if the functional manager is willing to accept the possibility that the 

quick decision may be suboptimal in the long-run, then the abbreviated procedure may be 



www.manaraa.com

162 

appropriate. We see the abbreviated procedure as a constraint on the optimal FEA 

methodology, and it should be presented as such. 

More technically, the constraint precludes n-1 arcs in a network representation 

of the migration process. This eliminates n-1 migration states from being considered 

when defining the BRE alternatives, leading to a potential suboptimal global decision. 

Denardo ([14], chapter 2) provides a simple mathematical presentation of the problem 

using directed networks. 

We understand the intent of the abbreviated procedure, but we think that more 

work is needed to define the circumstances under which it would be appropriate. 

x. RELATIONSHIP TO INFORMATION ENGINEERING 

We see Information Engineering (IE) as being primarily associated with the 

design, development, and operation of information systems. Our view of the proper role 

for information engineering parallels that presented by Richmond [30]. In general the IE 

process has an information system orientation, as opposed to a functional orientation. 

Since FEA is the primary analysis tool to support organizational reengineering, FEA is 

primarily associated with organizational strategy/planning; a primary input into the IE 

process. We acknowledge that the boundaries are blurred; hence, some aspects of FEA 

could overlap some components of information strategy planning and business area 

analysis. 

In summary, FEA is the primary economic analysis methodology to support 

organizational reengineering. The organizational reengineering analysis supports the 

organizational strategy/planning process. Once the organizational reengineering 

alternative is selected, information engineering is intimately involved in the 

implementation of the selected alternative. 

XI. CONCLUSIONS 

This paper discussed issues that need further clarification in the evolving DoD 

FEA methodology. While process flow analysis and activity-based costing are generally 



www.manaraa.com

163 

accepted procedures, cost and resource simulation modeling has not been widely 

accepted by the functional manager. 

We have discussed issues related to simulation modeling, and we have 

emphasized the activity risk analysis aspects of modeling. The paper suggests that 

simulation modeling (including risk analysis) is a primary FEA component, and if 

modeling is ignored there is potential for cost, benefit, and risk estimation errors. This is 

especially true in organizational processes that are characterized by feedback and 

resource reallocations. 

XII. REFERENCES 

[1] Bakke, Nils Arne and Roland Hellberg. Relevance Lost? A Critical Discussion of 
Different Cost Accounting Principles in Connection With Decision Making for Both 
Short and Long Tenn Production Scheduling, International Journal of Production 
Economics, Vol. 24 (1991),1-18. 

[2] Balut, Stephen J., Thomas P. Frazier, and James Bui. Estimating Fixed and Variable 
Costs of Airframe Manufacturers, P-2401. Alexandria, Virginia: Institute for 
Defense Analyses, 1991. 

(3) Bellman, Richard. Dynamic Programming. Princeton: Princeton University Press, 
1957. 

[4] Brimson, James A Activity Accounting. New York: John Wiley, 1991. 

(5) Byrnes, Patricia, Anthony Hartman, Robert Judson, Henry Neimeier, and Joseph 
Platenkamp. A Functional Economic Analysis Reference Methodology, MTR 
91 WOO198. McLean, Virginia: The MITRE Corporation, 1992. 

[6) Cellier, F.E. Continuous System Modeling. Heidelberg: Springer-Verlag, 1991. 

[7) Charette, Robert N. Software Engineering Risk Analysis and Management. New 
York: McGraw-Hill, 1989. 

(8) Cheslow, Richard C. and J. Richard Nelson. The Executive Workshop on 
Cost/Performance Measurement, Volume I: Executive Summary, P-2321. 
Alexandria, Virginia: Institute for Defense Analyses, 1989. 



www.manaraa.com

164 

[9] Cloos, John J. and James D. McCullough. New Accounting Systems and Their 
Effects on DoD Cost Estimation, P-2343. Alexandria, Virginia: Institute for Defense 
Analyses, 1989. 

[10] Cooper, Robin and Robert S. Kaplan. Profit Priorities from Activity-Based Costing, 
Harvard Business Review (May-June, 1991), 130-135. 

[ll]Cost-Based Activity Modeling Project Results. Proposal #91-20 Presented to the 
Information Technology Policy Board, September 4, 1991. 

[12]D. Appleton Company. Corporate Information Management Process Improvement 
Methodology for DoD Functional Managers. Fairfax, Virginia: D. Appleton 
Company, 1992. 

[13] Defense Systems Management College. Risk Management: Concepts and Guidance. 
Fort Belvoir, Virginia: DSMC,1989. 

[14]Denardo, Eric V. Dynamic Programming: Models and Applications. Englewood 
Cliffs: Prentice-Hall, 1982. 

[15] Emshoff, James R. and Roger L. Sisson. Design and Use of Computer Simulation 
Models. New York: Macmillam, 1970. 

[16]Fisher, Gene H. Cost Considerations in Systems Analysis. New York: American 
Elsevier, 1970. 

[17] Fultz, Jack F. Overhead: What It Is and How It Works. Cambridge, Massachusetts: 
Abt Books, 1980. 

[18] Giordano, Frank R. and Maurice D. Weir. A First Course in Mathematical 
Modeling. Monterey, California: Brooks/Cole, 1985. 

[19] Hammer, Michael. Reengineering Work: Don't Automate, Obliterate, Harvard 
Business Review, (July-August, 1990), 104-112. 

[20]Johnson, H. Thomas. Activity-Based Management: Past, Present, and Future, The 
Engineering Economist, Vol. 36 (1991), 219-238. 

[21] Kadota, Takeji. Charting Techniques. In Gavriel Salvendy, Editor, The Handbook of 
Industrial Engineering. New York: John Wiley, 1982. 

[22]Kaplan, Robert S. and Anthony A Atkinson. Advanced Management Accounting. 
Englewood Cliffs: Prentice-Hall, 1989. 



www.manaraa.com

165 

[23]K.aplan, Robert S. New Systems for Measurement and Control, The Engineering 
Economist, Vol. 36 (1991), 201-218. 

[24] Lovell, CA Knox and Peter Schmidt. A Comparison of Alternative Approaches to 
the Measurement of Productive Efficiency. In A Dogramaci and R. Fare, Editors, 
Applications of Modem Production Theory: Efficiency and Productivity. Boston: 
Kluwer Academic Publishers, 1988. 

[25] McCullough, James D. and Stephen J. BaIut. Defense Industry Indirect Costs: 
Trends, 1973-1982, P-l909. Alexandria, Virginia: Institute for Defense Analyses, 
1986. 

[26]Nemhauser, George L. Introduction to Dynamic Programming. New York: John 
Wiley, 1966. 

[27] O'Guin, Michael C. Activity-Based Costing: Unlocking Our Competitive Edge, 
Manufacturing Systems, Vol. 8, No. 12 (1990), 35-43. 

[28]Pryor, Tom. Activity-Based Management for a Competitive Advantage, Mimeo 
Lecture Notes, 1991. . 

[29] Quade, E.S. Analysis for Public Decisions, Third Edition. New York: North
Holland, 1989. 

[30] Richmond, Ken. Information Engineering Methodology: A Tool for Competitive 
Advantage, Telematics and Informatics, Vol. 8 (1991), 41-47. 

[31]Riebel, Paul. Einzelkosten- und Deckungsbeitragsrechnung, Grundfragen e. markt.
u. entscheidungsorientierten Untemehmensrechnung, 5. Auflage. Wiesbaden: 
Gabler Verlag, 1985. 

[32] Sage, Andrew P. Introduction to Systems Engineering Methodology and 
Applications. In Andrew P. Sage, Editor, IEEE Press, Systems Engineering: 
Methodology and Applications. New York: John Wiley, 1977. 

[33]Sassone, P. and W. Schaffer. Cost-Benefit Analysis: A Handbook. New York: 
Academic Press, 1978. 

[34]Schmalenbach, Eugen. BuchfUhrung und Kalkulation im FabrikgescMft. Leipzig: 
Gloeckner, 1928. 

[35] SRA Corporation. Corporate Information Management Functional Economic 
Analysis Guidebook. Arlington, Virginia: SRA Corporation, 1993. 



www.manaraa.com

166 

[36] StOppler, S. and D.C. Mattfeld. Kosten- und Deckungsbeitrags[lussanalyse in 
Allgemeinen Bezugsobjektnetzwerken, Paper Presented at the International 
Conference on Operations Research, Vienna, Austria, 1990. 

[37]Strassmann, Paul A The Business Value of Computers: An Executive's Guide. New 
Canaan, Connecticut: The Information Economics Press, 1990. 

[38]Streitferdt, Lotbar. Cost Management. In E. Grocbla and E. Gaugler, Managing 
Editors, Handbook of German Business Management. Stuttgart: C.E. Poeschel 
Verlag, 1990. 

[39] U.S Air Force Systems Command. Integrated Computer-Aided Manufacturing 
(ICAM) Function Modeling (IDEFO). USAFSC: Wright-Patterson AFB, Ohio, 
1981. 



www.manaraa.com

Using IDEFO in Functional Economic Analysis 

Minder Chen * 
Edgar B. Sibley *+ 

Department of Decision Sciences and MIS * 
Department of Information and Software Systems Engineering+ 

George Mason University 
Fairfax, VA 22030 USA 

L INTRODUCTION 

The use of the IDEF (a system definition methodology) has been mandated by 

the DOD's Director of Defense Information for documenting the process and data 

models of an FEA (Functional Economic Analysis) and for all Business Process 

Improvement Programs. IDEF stands for !CAM definition language. This 

methodology derives, in its present form, from the Integrated Computer-Aided 

Manufacturing (ICAM) program, where a standard specification methodology was 

needed for describing manufacturing processes and data; a family of methods has been 

developed under the ICAM program. Particularly, IDEFO and IDEFlx are applicable 

in the conducting FEA study. 

A very brief review of the FEA process is given first. Then, because there 

have been questions about the use of IDEF versus certain other methods and automated 

tools, we attempt to answer the following questions: 

• What is the IDEF methodology? 

• What is the relative value of such a methodology and what are the tools 
currently available to support them? 

• What is the difference between IDEF and the many Information Systems 
(IS) methods and their supporting CASE (Computer Aided System 
Engineering) tools? 



www.manaraa.com

168 

n. The Business Reengineering Process 

The tenns Business Case Analysis (BCA) is used interchangeably with the 

tenn Functional Economic Analysis (FEA). In DOD, functional managers have to 

conduct an FEA to justifY and defend investment projects on their information systems. 

They have to take into consideration factors such as total cost of the investment 

decision, the amount of risk associated with the decision, and the benefit of the 

decision toward business goals. FEA is a method for analyzing and evaluating 

management practices, alternative process improvements, and investments [18]. The 

focus of the FEA study is to model and analyze the business activities of an 

organization and its supporting infrastructure. 

Obviously, not the least problem in conducting FEA is in determining the 

scope or contour of the business being analyzed: Does it encompass all business or 

only certain parts? The scope of FEA study deals with DOD defined functional areas 

(those under the control of a Functional Manager), using them as a departure point for 

an initial cut at seoping the area or unit under consideration. 

Once a set of specific units or offices of a function area has been identified, we 

have to ask the following two refined questions: 

• What interactions are there between this portion of the business and 
others? and 

• How can the parts be isolated so that the boundaries are not confusing to 
the analysts and the allocation of the savings is not disputed by the 
various business areas? 

The overall FEA process consists offive steps: 

1. Create an initial baseline business process model. An initial business 
process model is created by interviews or having users and functional 
area managers participate in a facilitated business process modeling 
workshop. Then the baseline business process model is created with the 
help of functional area users, managers, systems analysts, cost analysts, 
and other experts. A pictorial process model is developed to help 
visualize the results and understand the analysis. 



www.manaraa.com

2. Determine activity-based performance and cost data. Cost and 
performance data are determined for the initial process model and used as 
a baseline. A high-level data model for the functional area may also be 
developed at this stage to facilitate the redesign of the business process 
models. The performance data include the volume and frequency of 
inputs, mechanisms, and primary outputs of each of activities in the 
process model. The consumption of inputs and the utilization of 
mechanism can be translated into cost data for each activity. Cost 
elements of all organizational units should be allocated to each activity 
and then be aggregated to derive the total cost of each activity. Using 
one primary output of the process, we can also calculate the unit cost for 
each activity, i.e., dividing the total cost for each activity by the volume of 
the primary output of the process. 

3. Develop alternative business process models. The project team 
evaluates the baseline business process model to identify opportunities for 
streamlining and redesigning processes. Activities that are not 
contributing to the added-value of the process and consume a lot of 
resources are potential candidate for consolidation, simplification, or 
elimination. A set of criteria, such as generalized coupling and 
cohesion, can be used to evaluate the baseline and alternatives. 

4. Evaluate alternative businesses process models. Alternative business 
process models are evaluated based on cost and performance data, such as 
the investments compared with the baseline. Performance data, such as 
volume and frequency of inputs and outputs as well as response time of 
processes is used to build a simulation model to analyze the dynamic 
behavior of the alternatives. Costs are also derived. 

5. Present and select one of tbe alternatives. A final set of alternatives is 
presented to top management based on the standard cost structure used in 
the organization. DOD uses a cost structure that is defined in IDA 
Template. A recommended alternative is identified. Top management 
will select one alternative. 

169 

Once a FEA study has been the approved, the selected business process 

redesign should be implemented. The implementation plan and strategies should be 

carefully formulated and the information systems that have been identified to support 

the redesigned process should also be designed and built accordingly. 

m The IDEF Family of Metbods 

The IDEF is a family of methods to support the modeling of complex 

systems. The term "system" used in the field of systems modeling means: a usually 



www.manaraa.com

170 

large complex of interconnected parts with an organized array of individuals and parts 

forming and working as a unit. One of the criteria for choosing a system modeling 

method is primarily that it be appropriate to model the type of system under 

consideration. It must also be: 

• Easy to learn and use by its intended users. 

• Capture information of the target system in a structured way so that the 
information can be further analyzed by computer programs. 

• Support decomposition of the system into a hierarchical organization 
(e.g., a decomposition) of components with different levels of abstraction. 

• Have software tools to support the documentation, storage, and analysis of 
the models in applying the methodology. 

A. IDEF History and Its Evolution 

The first of the IDEF methods was called IDEFO [12]. This is a functional 

modeling method, somewhat similar to a conventional procedural and control flow 

chart with aspects of a general data flow diagram. A second method (IDEFl) is based 

on Chen's Entity-Relationship-Attribute model for conceptual data base design. IDEFI 

Extended (IDEFlx) was developed under the Integrated Information Support System 

(lISS) project, under the ICAM Program, as a data modeling technique to describe 

common data model subsystem. The primary contract is General Electric Company. 

The final report was delivered in November 1985. This has since been extended, 

mainly by D. Appleton Company (DACOM). Other members of the IDEF family 

include a simulation language (IDEF2) developed mainly by Pritsker & Associates. It 

can be used to simulate a design, thereby representing time varying behavior of 

resources in a system. There is an on-going effort to extend the IDEF suite of 

methods (13]. Other members of the IDEF family (IDEF7 to IDEF 14) are in review by 

the IDEF User Group. In this report, the discussion is focused on IDEFO and IDEFlx 

and their applications in FEA. 

A model is expected to answer questions about the requirements and initial 

design decisions of a system. A model should have a clearly defined boundary. A 

model has a viewpoint and purpose. A system's IDEFO model consists of a set of 



www.manaraa.com

171 

interrelated IDEFO diagrams, texts, and tables. 

Activities and things are two object types that can be modeled in IDEFO. 

Activities are functions and processes performed by the system. Things include data 

(e.g., a blueprint, customer orders) and non-data objects (e.g., parts, machine tools, an 

automated system). The interactions between things and activities are called 

connections. IDEFO diagrams have boxes and arrows. Boxes represent activities and 

they are placed in a diagram as a staircase to indicate the dominance of one activity 

over the other. Arrow-headed lines, also called arrows, are connections that represent 

interactions of things with activities. Arrows connect boxes together to indicate the 

constraints of one activity imposed on another. The basic construct of an IDEFO 

diagram is depicted in Figure 1. An example of a highest level IDEFO diagram, i.e., 

A-O diagram, is shown in Figure 2. 

Controls 

Inputs Function 

Mechanism 

Outputs 
1-----1 ... 

Figure 1. The Basic Constructs of an IDEFO Diagram 

Raw 
Material 

Blueprint 

... 

Work 
Order 

Make Part 

Machine 

Prioritized 
Schedule 

t---.... Fabricated Part 

Scrap 

Template 

Figure 2. An Example of an A-O Diagram 



www.manaraa.com

172 

A IDEFO diagram also contains the following information: 

• Title 

• Author(s} of the diagram 

• Project Name 

• Date of creation 

• Date of last revision 

• Diagram status: Working. Draft. Recommend, or Publication 

• A list of readers and dates when the readers read the diagram 

• Context: Position of the diagram in the parent diagram. e.g., None for A

o diagram, Top for first-level decomposition diagram, or I co. 01 to 
show the relative position of the parent process in the decomposition 
diagram that it belongs to. 

• Node Number: A unique identifier of a box in an IDEFO diagram. It 
consists of project abbreviation, "I", Node index number of the parent 
node, and box number of the node in the diagram. For examples: 
FEAlAl, FEAlA13, FEA132. 

• Notes: Substantive comments about the diagram, numbered from 1 to 12. 

• C-Number: An IDEFO diagram's unique identifier (e.g., MC 002) that 
consists of an author's initials (or unique identifier) and a sequence 
number. The C-number of a previous version of the diagram is enclosed 
in parentheses to provide link to prior work. 

A system can be modeled as a set of interrelated IDEFO diagrams, texts, and 

glossary, called IDEFO model. The highest-level diagram, called A-O diagram, 

represents the whole system. An A-O diagram has only one box and is annotated by 

PURPOSE and VIEWPOINT. The PURPOSE of a system's IDEF model is to answer 

the reason why the model was developed. A system can be described from several 

VIEWPOINTs (I.e., that of a person or an organizational unit). An IDEFO model 

should, however, be developed from only one particular viewpoint. 

The role of the arrows is important in IDEFO diagram: 

• Arrows represent how boxes influence or constrain each other. A box can 
send its outputs to other functions for further transformation, provide 
controls that govern what other functions must perform, or serve as 
mchanisms for carrying out other functions. 



www.manaraa.com

173 

GENERAL 

A-O 1 Ab." •• ,,", 

I 
The dlegramAOls ~ 
the "parent" of 
the dlegramA4. ~ ~ 

1""Mmoo, 

A4 -= DETAILED 

Figure 3. Tbe Hierarcbical Structure of an IDEFO Model 

• The side of the box at which an arrow enters or leaves determines the role 
of an arrow (i.e., a thing) related to the box. These roles include input 
(left), control (top), output (right), and mechanism (bottom) They are 
referred to as ICOM in IDEFO diagrams. An IDEF function and its 
related ICOMs can be interpreted as: 

"Inputs are transformed by tbe/unction into outputs according to 
controls, using mechanisms. " 

• Input: Describe resources or data that are needed to perform the function 
and are transformed by the function into outputs. 

• Control: Describe the conditions, rules, procedures, or circumstances that 
govern the execution of the function. An arrow is a control unless it 
obviously serves only as input. Each function should have at least one 
control arrow. Most of controls are in the form of data. 

• Output: Data or non-data objects that are transformed by the function and 
leave the boundary of the process are called outputs. An output of a 
function can be used as inputs, controls, or mechanism of other functions. 

• Mechanism: Define the actors (i.e., supporting mechanisms) that carry 
out the function. A mechanism may be a person, an organizational unit, 
a physical device, a computer program, etc. 

• Arrow branches: Branches that are not labeled are assumed to contain all 
the things carried by the arrow before the branch. Branches that are 



www.manaraa.com

174 

labeled could contain some or all of the things carried by the arrow before 
the branch. 

• Arrow joins: Branches that are not labeled are assumed to contain all the 
things carried by the arrow after the join. Branches that are labeled could 
contain some or all of the things carried by the arrow after the join. 

IDEFO requires 3 to 6 boxes in anyone diagram except A-O diagram. 

IDEFO tends to be used as a physical model because you can describe the 

implementation mechanisms of systems functions. However, if we only use and focus 

on the inputs, outputs, and controls of the systems functions, IDEFO can be used to 

provide a logical (i.e., essential) model of the system. IDEFO diagram can be used to 

show material flows. 

An IDEFO model consists of a set of hierarchically organized IDEFO 

diagrams. A function can be decomposed into a detailed IDEFO diagram. The 

hierarchical structure of an IDEFO is shown in Figure 4. The arrows connected to a 

function are carried down to the function's decomposed IDEFO diagram to maintain 

consistency and completeness. 

IV. Tools Supporting IDEF and FEA 

There are several tools that could be used to support the application of IDEF 

and FEA. Many techniques and methods used in an FEA study are complex and a 

large amount of structured infonnation is generated in the definition process. 

Selecting appropriate tools and integrating them to support these techniques and 

methods are critical to the successful implementation of an FEA. 

A. Computer-Aided Diagramming Tools for IDEFO 

Currently there are several COTS that support IDEFO and IDEFlx. Some 

basic infonnation of these IDEF tools is listed in Table 1. There are several 

approaches that an organization can take in providing computer-aided diagramming 

tools to support the use ofIDEF methods. All of these may be alternatives: 

1. Select the best tool from the marketplace and make it as a standard tool to 



www.manaraa.com

be used in FEA. 

2. Recommend a list of tools as long as they support existing IDEF methods. 

3. Recommend use a CASE shell to generate diagramming tools that 

support IDEF to meet the specific requirements in applying IDEF for 

FEA. 

Table 1. A Sample of Tools for IDEFO and IDEFlx 

Product Methodology Vendor Platforms 
IDEFine-O IDEFO Wizdom Systems, Inc. Sun, PC, Apollo, 

VAX 
Design!IDEF IDEFO Meta Software Co. Mac,MS 

IDEFI Windows, Unix 
IDEFlx 

AlO IDEFO Knowledge Based PC 
All IDEFI Systems, Inc. 
Allx IDEFlx 
IDEFlLeverage IDEFO D. Appleton Co. PC, VAX 

IDEFlx 
ERWin IDEFlx Logic Works MS Windows 

175 

One advantage of the latter alternative is that CASE shells provide a flexible 

approach to supporting existing and future methods required in the FEA process. 

CASE shells are software tools that allow users to define a system modeling methods 

and then generate a run-time environment to support the specification of a target 

system using the method. There are several commercially available CASE shells in 

the marketplace. It will be a worthwhile effort to evaluate these CASE shells. The 

benefit of the CASE shell is that, it allows the customization and evolution of the 

method. Existing IDEF tools might need appropriate extensions to support the 

modeling and analysis. Using CASE shell to generate tools to support IDEF will 

allow continuous improvement of IDEF and smooth integration of IDEF with tools 

needed in the FEA and in the downstream systems development process. Examples of 

such CASE shells are: Intersolv's XL/Customizer, VSF's Virtual Software Factory, 

and CADWare's Foundry. 



www.manaraa.com

176 

The work of certain standards committees, such as the IDEF Users Group and 

the Electronic Industries Associate's COIF (CASE Data Interchange Format) 

Technical Committee may soon make it possible to pass designs (i.e., IDEF models) 

from one vendor's tool to another. 

B. Tools That Support the FEA 

There are several tools that could be used in the FEA process. Using IDEF 

for business process modeling under the context of FEA is a collaborative effort among 

functional area users, managers, cost analysts, information engineers, and business 

engineers. It is a change process because the re-engineering business process may 

dramatically change how work will be done in the future. Tearn-oriented techniques, 

such as Joint Application Design, may be used to encourage proper participation of all 

parties involved in the process to ensure all the requirements and concerns are surfaced 

and addressed. One of the critical success factors in using JAD is the skill of the 

facilitator (i.e., session leader). However, skillful facilitators are hard to find. 

Emerging collaboration technologies can be used to assist facilitate business process 

modeling workshop. Collaboration technology can be used to provide anonymity, 

C9ual participation, and complete documentation of workshop outcomes. It is not 

going to replace a good facilitator, but it can be used to improve the effectiveness of 

business process modeling. 

Conducting FEA could be a very political process. Group facilitation 

techniques and collaboration technologies can be used to assist to support business 

process modeling meetings. Group support systems, such as GroupSystems and 

VisionQuest can be used as a front-end requirements elicitation tool that captures 

initial specifications ofa business process [3]. These specifications can be transferred 

to IDEF tools for the construction of formal IDEF models. We have developed a 

Collaboration Technology Laboratory at George Mason University, that can be used to 

demonstrate this approach. 

The IDA Template can be used to present the final cost analysis of various 

alternative business process models with the baseline model. Cost data collected for 



www.manaraa.com

177 

various alternatives and for the baseline can be presented in different formats (e.g., 

graphics and tables) based on a specific cost breakdown structure. Two major cost 

items are: Operations Costs and Management & Support Cost. Each of them is broken 

into down into the major life cycle phases and expense types. Cost data of baseline 

and alternatives are entered into a cost Data Sheet based risk and the detailed cost 

breakdown structure over a six-year period. For alternatives, each estimated cost item 

has the high and low values. It is a way to express the risk or uncertainty involved in 

the estimation. A Risk Adjusted Discounted Cash Flow (RADCF) analysis will be 

performed on each alternative. The results are presented in graphics and tables. 

V. Comparison of IDEF Methodology with Dataflow, ERA, and 
Other Techniques 

A system can be modeled from multiple viewpoints. However, in IDEFO you 

IDE F 0 I 
C 1 

11 .. { 
M 1 

Re.I-TimeDFD I 
without.Repository ~, 

11 ... M 1 
A 

C 1 

.. o 1 

Construct 
Mapping 

o 1 

Figure 4. Mapping Between IDEFO to Real-time DFD without a Repository 

are only allowed to model a system from a single viewpoint. A system model consists 



www.manaraa.com

178 

of a set of interrelated diagrams, texts, and tables. Data Flow Diagrams (DFD) can be 

used to describe both the logical and physical aspects of an existing (AS-IS) system or 

a new (TO-BE) system, just as can IDEFO. When a DFD is used to specify the 

physical aspect of a system, the implementation mechanism can be amended to the 

processes in the diagram as depicted in Figure 4. Mechanism can also be captured in 

the corresponding entry of a process object in the repository as shown in Figure 5. 

IiDEFol 
C1 

t 
A 

I 01 11 I 
t 

M1 

Ai 
Construct 

ReaI·lime DFD , I ' r 
Nlapping 

Vlittl 8 Repository 

o.tini1ion of IIC1ivity A 
Graphical No1Btions In 1he Repoaitory 

Obj_ID:A 

1 C1 
Obj_ Type: ACmnV 
Lab.: Pr_aa Order 
ElIpIod .. to: IDEFOA1 Diagram 

11 ~ 
Activity Type: Online 

--:----+ A ElI8CU1ion Frequency: 2D per hour 
... Machaniam: M1 
Deacrip1ion: ••••••• 

Figure 5. Mapping Between IDEFO and Real-time DFD with a Repository 

The weaknesses ofIDEFO include: 

1. The external entities are not explicitly represented, and thus the interaction of the 
system with external entities is only represented by the inputs, outputs, controls, 



www.manaraa.com

179 

and mechanism of the system. 

2. Boxes in IDEFO are forced to be placed as a staircase pattern to show the 
dominance among them. However, there are situations where several functions 
may have the same dominance. The author of an IDEFO diagram still has to lay 
out these functions as if they were different in their dominance. 

3. The glossary of IDEFO is a simple description of objects used in the IDEFO 
diagram. It can not represent additional attributes of the objects or relationships of 
the objects with other objects. A more powerful repository is needed to integrate 
IDEFO diagram with IDEFlx diagram, and with other modeling tools used in the 
FEA process. 

4. INPUT, OUTPUT, MECHANISM, and CON1ROL are tenns used to describe 
how things (i.e., data and materials) are related to a function or activity under 
study. An output of a function can be used as an input, control, or mechanism of 
another function. Controls are usually in the form of information. It is not very 
easy for an author of an IDEFO model to determine the role of a thing that 
interacts with the function. 

Currently, there is no repository concept in IDEF techniques. Objects (e.g., 

functions, inputs, and outputs) are defined in a glossary that capture only limited 

attributes of the objects. Structured relationships among objects are not captured. The 

integration of IDEF suite of methods can be achieved by using a repository system that 

can support the data integration among tools that support IDEF methods and related 

tools for FEA. Currently, IDEF does not provide a predefined set of attributes and 

relationships for further descriptions of the characteristics of IDEF objects and their 

relationships to other objects. Due to this deficiency, if IDEF has to be used in FEA, a 

meta-model of the IDEF has to be defined to serve as a foundation for implementing 

repository-based IDEF tools [5]. Important information required for FEA should be 

defined in the meta-model. The following are some suggestions: 

1. Cost and resource utilization data could be associated with MECHANISM. 

These include volume, frequency, unit cost, etc. 

2. Performance data could be associated with INPUTS, OUTPUTS, and 
PROCESSES. Examples of performance data include response time, 
throughput, etc. 

3. Things can be categorized into data and non-data objects such that we 
can link data objects that are used as inputs, controls, or outputs of 
functions in IDEFO with IDEFlx diagrams or with other definitions of 
data structures. 



www.manaraa.com

180 

VL Using IDEF for Business Process Modeling 

In discussing ISDOS project in retrospect, one author has said that there was 

major industrial apathy due to a lack of the use of PSL/PSA generated documents for 

implement the target system [16] - thus the users saw it only as a complicated 

documentation device. If the only purpose of using IDEF in FEA is to document the 

business process model, the potential benefits of using it will be limited. We believe 

that IDEF or its alternative techniques should be used for continuous business 

improvement and for the downstream systems development activities. If a technique 

or tool is used only for documentation, no one is likely to have a vested interest in 

keeping the business model up-to-date. The effort spent in building the business 

process models may be wasted. 

The business expertise embedded in business models is a valuable asset that 

should be exploited by functional area users and managers with the assistance of 

business analyst. Once the model has been developed, it could be used by functional 

area users and managers to: 

1. support continuous business improvement based on the performance 
criteria established in the model, 

2. assist the business reengineering process in making structural changes, 

3. navigate and explore the model in order to understand the goals and 
objectives of the organization, 

4. guide the development of IS models to ensure that the IS are aligned with 
the business objectives, 

5. perpetuate a common mental model of the business, and 

6. form the basis for delivering information in the business context. 

Business process models should be integrated with information systems 

models because many critical business functions are supported by IS. An integrated 

model should be used not only for the design/redesign of business and its IS, but the 

users to deliver the information [2,4]. 



www.manaraa.com

181 

vn. Conclusions 

Training is one of the important factor in successfully implementing a 

methodology. It is particularly critical in implementing IDEF as a front end modeling 

technique to support business engineering/reengineering and to facilitate PEA because 

these processes are driven by end users and managers. They are usually not familiar 

with the systematic approach in analyzing and designing business systems and 

information systems. However, their involvement is politically smart. It is the only 

way to capture the information and knowledge about the businesses and their 

operations. By tapping into front-line users' and managers' expertise and creativity 

about how they may improve their work processes, we will have a better chance to 

introduce dramatically improvements in the processes. Training on IDEF in the 

PEA should be given to both business analysts and users/managers of various agencies. 

Real-time training should be given so that people with the training can apply the 

techniques, methods, and tools in their jobs. 

The PEA is a change process. It changes the way we think about information 

systems investment and development processes and the users' and managers' roles in 

this process. It is a change of mind set instead of a change of notations. Therefore, it 

is more important to educate the agencies about the underlying principles Corporate 

Information Management (CIM) first [1, 17], then familiar them with PEA processes. 

IDEF and other related techniques, methods, and tools are important mechanisms to 

carry out the vision of CIM, but they should be introduced after the CIM principles and 

PEA process has been fully understood. 

VIll. References 

[1] Brewin, B., "CIM: Corporate Information Management," white paper, Federal 
Computer Week, September 1991, pp. 1-15. 

[2] Chen, M., Liou, Y. I., and Weber, E. S., "Developing Intelligent 
Organizations: A Context-Based Approach to Individual and Organizational 
Effectiveness," to appear in Organizational Computing. 

[3] Chen, M. and Nunamaker, 1. F., Jr., "The Architecture and Design of a 



www.manaraa.com

182 

Collaborative Environment for Systems Definition," Data Base, Vol. 22, No. 
112, Winter/Spring 1991, pp. 22-29. 

[4) Chen, M., Nunamaker, 1. F., and Weber, E. S., "The Use of Integrated 
Organization and Information Systems Models in Building and Delivering 
Business Application Systems," IEEE Transactions on Knowledge and Data 
Engineering, Vol. 1, No.3, 1989, pp. 406-409. 

[5) Chen, M. and Sibley, E. H., "Using a CASE Based Repository for Systems 
Integration," The 24th Annual Hawaii Internafional Conference on System 
SCiences, January 8-11, 1991. 

[6) Cost-Based Activity Modeling Project Results, Proposal #91-20, presented to 
ITSB, September 4, 1991. 

(7) Gulden, G. K. and Reck, R H., "Combining Quality and Reengineering for 
Operational Superiority," Indications, September/October, 1991, Vol. 8, No.1, 
pp. 1-9. 

[8) Hammer, M., "Reengineering Work: Don't Automated, Obliterate," Harvard 
Business Review, July/August 1990, pp. 104-112. 

[9) Hammer, M., "Why We Need Both Continuous and Discontinuous 
Improvement," Indications, September/October, 1991, Vol. 8, No.1, pp. 6-7. 

[10) IDA, Functional Economic Analysis of DoD Functions, Users Manual, 
Institute of Defense Analysis, 1991. 

[11) Integrated Computer-Aided Manufacturing (lCAM) Architecture Part 11, Vol. 
IV - Function Modeling Manual (lDEFO) 

[12) Marca, D. A. and McGowan, C. L., SADT: Structured Analysis and Design 
Technique, New York: McGraw Hill, 1987. 

(13) Mayer, R 1. and Painter M. K., "The IDEF Suite of Methods for System 
Development & Evolution," working paper, Knowledge Based Systems Inc., 
1991. 

[14) Robson, G. D., Continuous Process Improvement: Simplifying Work Flow 
Systems, New York: The Free Press, 1991. 

[15) Sibley, E. H., "An IDEF Family Portrait," working paper, George Mason 
University, 1988. 

[16] Sibley, E. H., "The Evolution of Approaches to Information Systems Design 
MethOdology," in Information Systems DeSign Methodologies: Improving The 
Practice, edited by Olle, T. W., Sol, H. G., and Verrijn-Stuart, A. A., North
Holland, 1986, pp. 1- 17. 

[17] Strassmann, P. A., The Business Value of Computers, New Canaan, CT: The 
Information Economics Press, 1990. 

[18] Yoemans, M., Functional Policies for Corporate Information Management, 
presentation at IDEF Users Group Symposium, October 16, 1991. 



www.manaraa.com

Performance Evaluation Gradient 

I. INTRODUCTION 

Henry Neimeier 
Tbe MITRE Corporation 

7525 Coisbire Drive 
McLean, V A 22102 USA 

The Infrastructure Engineering Directool1e of the Defense Information Systems 

Agency (DISA) Center for Information Management is responsible for derming an 

information utility to provide data processing, storage, and value-added services to DOD 

users. One of the key questions on how to structure the utility is whether to contract for 

services or provide them within DOD. The primary goal of PEG is to aid in answering 

this question. Present procurement regulations and practices lead to long procurement 

and installation delays when compared to commercial practice. The age of the 

government installed base is far higher than in industry (see references 1&2). These 

effect the potential cost of government-provided services. Key information utility 

questions include: 

What are the key parameters that affect the outsourcing decision? 

What products or services are more efficiently outsourced ? 

What products or services are more cost effectively provided by the 

government? 

• How do government procurement delays affect costs ? 

• How does the age of installed equipment affect costs ? 

What is the most cost effective equipment turnover rate? 

A secondary goal of PEG is to provide the basis for a Functional Economic Analysis 

of promising products or services. FEA is a methodology for modeling the costs, 

benefits, and risks associated with alternative investment and management practices, and 

is the primary decision support methodology for DOD business re-engineering. Since 



www.manaraa.com

184 

July 1991 flDlctional managers bave been tasked witb preparing FEAs f<X' all proposed 

information technology alternatives. One apJX'Oved methodology is dermed in reference 

3. A companion document describes an abbreviated fEA process that can be used in 

initial alternative definition (see reference 4). A fEA requires JX'Ojection of workload, 

system cost, and perfOlDl8Jlce five years into tbe future: It uses a discounted present 

value distribution of savings as a measure of effectiveness. Effectively projecting 

performance into tbe future in tbe fast-cbanging information technology environment 

requires a system dynamics model. PEG uses dynamic modeling to provide tbe 

discolDlted present value savings distribution. 

U. MODEL DESCRIPTION 

The model is implemented in version 2.0 of tbe i Think graphical simulation 

language. A full description is contained in reference 5. Each graphical symbol has an 

lDlderlying supp<X'ting equation and documentation. Figures 1 and 2 give the graphical 

representation of the model f<X' botb government and commercial sectors. Tbe continuous 

simulation model is a linked set of nonlinear integral difference equations. Boxes 

represent accumulations (integrals). Rate valves (circles witb T at to~ derivatives) 

control conserved flows in tbe double line pipes. Conserved flows such as lDlits and 

dollars take time to move. Information flows represented by single lines are 

instantaneous. Clouds represent tbe external environment Circles represent auxiliary 

equations. Tbe complete model is documented in reference 6. 

"i Think" has a sensitivity tlDl capability that automatically performs a 

series of runs at specified input parameter values. This greatly simplifies tbe gradient 

calculation, since tlDlS for each individual parameter automatically can be performed. 

Quadric surface fits require even more runs, so future development will be greatly aided 

by this feature. 

Figure 1 shows the government sector and figure 2 shows tbe commercial 

sector. Tbe commercial sector structure adds salvage, depreciation, Return On Equity 

(ROE) and profit to tbe government sector. Otherwise, tbe model structure is tbe same. 



www.manaraa.com

185 

Of course, some of the parameter values are different. Note similar variables in the 

commercial sector have the same abbreviation as the government sector followed by a 

"C". Both sectors have a fee-for-service cost per unit (CPUopn & CPUopnC) that is 

calculated over the simulation time. 

Net 

Value 

Cash 
Flow 

Interest 

CooCastC Proc 
CumCashDif 

Commerclal-Government 

Inveatment 

Figure 1. Government Sector Model 

OM 

Costs 



www.manaraa.com

186 

Unit 
Equip 

Coat 

F .. 
For 
Service 

C.8h 
Flow 

Interest Investment OM 
ProcDelC CMC 

CPMC Disc Selvage. Depl'Klelion 

Figure 2. Commercial Sector Model 

A. Measures Of Effectiveness 

OMDecrC 

The two primary output measures of effectiveness used in the model are cumulative 

cash flow over the operations period, and discounted cash flow over the operations 

period. The operations period can be any length. For the fast-changing LAN 

environment we chose 60 months. Functional economic analysis uses discounted cash 

flow as its prime measure. The government discount rate of 10 percent was chosen, 

although other values are easily set. 

B. Key Controllable Parameters 

The Local Area Network (LAN) services area was chosen as an example case. This 

area has significant savings potential (see reference 7). LAN equipment and maintenance 



www.manaraa.com

187 

costs are decreasing in excess of twenty percent per year. LAN services is one of the 

fastest growing components in the federal ADP budget Operations and maintenance are 

a significant proportion of total costs. We estimated the present operating point 

(baseline parameter values) for both OOD and commercial service provision. 

In the PEG model, cumulative cash flow is a nonlinear function of several input 

parameters. A baseline operating point was chosen and each parameter was individually 

varied from this operating point The parameters that have the same values (operating 

point values in parenthesis) for both government and commercial sectors include: 

• Initial LAN port unit equipment cost ($2000) 

• Equipment price reduction (20 percent per year) 

• Initial operation and maintenance cost per dollar invested (SO cents per year 

per dollar investment) 

• Decrease in operation and maintenance cost (10 percent per year) 

Procurement cost percentage of unit equipment cost (4 percent) 

• Equipment lifetime (36 months) 

Proportion of total unit equipment cost paid during the procurement and 

installation interval (25 percent) 

• Discount rate for net present value calculation (10 percent) 

Parameters that have different government and commercial values include: 

• Average installed base age (30 months government, 15 months commercial) 

• Procurement processing delay (12 months government, 3 months 

commercial) 

Interest rate (9 percent government, 16 percent commercial) 

The parameters that only apply to commercial operations include: 

• Commercial federal and state tax rate (40 percent) 

• Equipment salvage value (25 percent of new equipment price) 



www.manaraa.com

188 

• Depreciation life (twice equipment life- straight line depreciation) 

The model easily accommodates changes in any of the parameter values. 

III. MODEL RESULTS 

No inflation rate was assmned for the model ruos. Figure 3 shows how the yearly 

per port cost for both commercial and government operation decrease over the course of 

the simulation. The initial 1992 cost per port per year is $3200. The curves are almost 

identical since the operating point is close to break even cost. This includes a 60 percent 

commercial profit on sales. 

3200 

2400 

lii 
Q) 

>-
~ 
't 1600 0 c.. 
Qi 
Q. 

e 
.!!! 
"0 
0 800 

o 
16 31 46 61 

Months 

Figure 3. Yearly Port Cost 



www.manaraa.com

189 

Figure 4 shows the cumulative government cost picture. Operations and 

maintenance are by far the largest cost category, followed by cumulative investment and 

interest. Note that installed capital investment (Invest) decreases throughout the 

simulation. More costly old equipment is replaced by less costly new equipment. The 

number of installed units is fIXed at 30,000 for both government and commercial sectors. 

Future releases will investigate growth or reduction in installed base. 

200 

150 

:! • 
0 
0 100 

c 
0 

= ::IE 
50 

o 
16 31 

Months 

Figure 4. Cumulative Government Costs 

46 61 

Figure 5 shows the cumulative commercial picture. The largest cumulative cost is for 

operations and maintenance followed closely by profit Cumulative investment cost 

over the operating period is next 



www.manaraa.com

190 

150 

:! • 
'0 
Q 

100 
c: 
0 

i 
50 

16 31 
Months 

46 

Figure 5. Cumulative Commercial Costs 

61 

Figure 6 shows the operations and maintenance cost per dollar invested for both 

government and commercial. Both show a significant decrease over the simulation 

period. Since capital investment is also decreasing. there is a substantial reduction in 

operations and maintenance costs. This is shown by a significant reduction in the slope 

of the cumulative operations and maintenance cost curves in figures 4 and 5. 



www.manaraa.com

0.70 

.. • .. 
>-... .. 
Co 

-,:J 

.!! ... .. 
> 
.5 -0.35 .. .. 
Co 

::E 
0 -

25 

+-------~~------~--------,_------~ 15 
16 31 

Months 
46 61 

191 

• z: 
'E 
0 :. .. 
Q 
c 

'E .. 
E 
Co 
"S 
I::r 

W 

Figure 6. Operations and Maintenance Per Dollar Invested And Equipment Age 

The operating point equipment life time is set to 36 months. Note that both 

government and commercial equipment age increases over the simulation period but does 

not reach 36 months. Thus steady state in equipment age is not reached in the 

simulation period. 

The overall system boundary for this model is drawn around OOD rather than the 

entire government. The depreciation tax loss helps the commercial fum at the price of 

reduced Treasury income. This is equivalent to a Treasury subsidy to OOD outsourcing. 



www.manaraa.com

192 

A. Factor Sensitivity Analysis 

Over a five year operation period, the t.eak-even commercial profit is 60 percent of 

sales. The t.eak-even profit is where commercial and OOD operation are equally costly. 

If vendors are willing to accept a profit below the break-even point, then it is more 

efficient for the government to outsource the modeled services. This result is sensitive 

to the price reduction role, the installed government base age, and the procurement delay. 

The examples case assumes a 20 percent annual price reduction rate in equipment cost. 

For a commodity product or service, with no equipment price reduction, the break-even 

profit is 27 percent of sales. Greater rates of equipment price reduction result in higher 

break-even profits. A 30 percent price reduction rate produces a 92 percent break-even 

profit. If the average OOD installed base age is reduced from 30 months to the 

commercial value of 15 months, break-even commercial profit is reduced from 60 percent 

to 37 percent of sales. A reduction ofOOD procurement delay from 18 months down to 

the commercial value of 3 months reduces total LAN procurement, operations, and 

maintenance costs by ten percent. These results are based on the commercial tax benefits 

available from depreciation and interest expense write-offs. In effect, the Federal 

Treasury is subsidizing DOD outsourcing. 

Figure 7 shows the cumulative commercial cash flow advantage for various 

government procurement delays at the operating point The operating point was chosen 

near the boundary where OOD and commercial service provision are equally costly. At 

twelve months or more government procurement delay outsourcing is superior. At nine 

months or less procurement delay OOD service provision is superior (assumes 60 

percent commercial break-even profit on sales). 



www.manaraa.com

~ 6.00 
0 4.81 
ii: 
.c 4.00 • • U 

• ~ 2.00 .. -. :::J a E. 
0.00 :::J-

Ul: • -> .-u 
U'" -2.00 .. • E 
E 
0 -4.00 U 

~ -5.87 
-6.00 

3 6 8 12 18 

Government Procurement Delay Months 

Figure 7. Commercial Cumulative Cash Flow Advantage Versus Government 
Procurement Delay At LAN Operating Point 

193 

Figures 8 and 9 show the percent increase in cumulative government and industry 

cash flow for various equipment lifetimes at the operating point. The optimal 

equipment lifetime is approximately 36 months for industry and 42 months for 

government. 1be commercial salvage value, depreciation and interest expense write-offs 

lead to a shorter optimal commercial equipment life time. Longer or shorter equipment 

lives than the optimum result in increased costs. 1be optimal equipment life is 

dependent On the operating point. Faster equipment price reduction rates and greater 

operation and maintenance costs as a proportion of investment lead to shorter optimal 

equipment life times. Higher procurement cost proportions and interest rates lead to 

longer optimal equipment life times. The reciprocal of equipment life time in months is 

the equipment turnover rate per month. 



www.manaraa.com

194 

~ 
4.50 4.31 

0 
u:: 4.00 

4: 3.50 • .. 
• c 

" '0 3.00 

• A. 

~ II 2.50 

• c 
:i ii 2.00 
E ~ ::I 1.50 

" a. 
0 

= 1.00 
~ • > 0.50 • 0 • ! 0.00 

u 

= -0.50 
i- 24 30 36 42 48 54 60 

Government Equipment LIf. In Month. 

Figure 8. Cumulative Cash Flow Versus Government Equipment Life At LAN 
Operating Point 

~ 3.00 0 2.78 
u:: 
4: • 2.50 • " .. C · -> 0 2.00 ;0. 
• :; II 

E = 1.50 ::I .. 

" !! • c a. 
-0 1.00 
• .. • • • 
• > to 0.50 

= i-
0.00 

Figure 9. Cumulative Cash Flow Versus Commercial Equipment Life At LAN 
Operating Point 



www.manaraa.com

195 

B. Gradient 

The gradient gives the change in output per unit change in selected parameter value 

when all other parameters are held fIXed. It is the partial derivative of the output measure 

relative to each controllable model parameter. The model output measures are the 

cumulative cash flow and the discounted cash flow. The gradient gives the normal to the 

hyperplane tangent to the iso-cost surface (see figure 10). It is the direction offastest 

increase in cost. Figures 11 and 12 show the cumulative cash flow gradients for 

government and commercial operation. For example, in Figure 11 every 1 percent 

increase in government procurement cost proportion (ProcCost percent) of equipment 

price results in 1.64 percent increase in total cumulative cash flow (cost) over the 

operations period. The factor abbreviations, full names, and factor change for gradient 

calculation (in parenthesis) are as follows: 

• Life6moDec, equipment lifetime decrement (6 months) 

• Proc mo, procurement and installation time increase (1 month) 

• Interest%, Interest rate increase(l %/year) 

• Price %, equipment price increase (1 % / year) 

• OMl$Init%, initial annual operations and maintenance dollars 

as a percentage of investment dollars increase (1 %) 

• OMl$inc%, increase in operations and maintenance costs (1 %/year) 

• ProcCost%, increase in procurement processing cost as 

a percentage of equipment price (1 %) 

• Profit%, increase in profit as a percentage of sales (1 %) 

• Tax%Dec, decrease in tax rate (1 %) 



www.manaraa.com

196 

• DepLife%Dec, decrease in depreciation life time (1 %) 

• Salvage Dec, decrease in salvage percentage (1 %) 

The dot product of the gradient with a proposed policy vector, which represents a 

plan to change parameter values, gives the cost impact of that policy. Gradients and 

policy vectors should be investigated at various operating points in future extensions of 

the model. Since the actual iso-cost surface is curved, the gradient only holds for a small 

region aroWld the operating point Another extension would be to fit a quadric swface to 

a set of model runs. This would aid in determining minimal cost operating points and 

apply over a larger operating region. A simple three-parameter example is given in the 

next paragraph. Reference 8 describes a full performance evaluation swface model 

developed as an extension to this paper. 

• .t: c: 20 0 
:I 
,... 
• .. 
Q 

c: • e 
! 
5 
£ 

Figure 10. 60 Percent Cost Reduction Surface and Gradient 



www.manaraa.com

~ 2.50 
0 
ii: 
.r:. • 2.00 • (J 

• > ;: 1.50 • :; 
E 
:I 
(J 1.00 

.: 
• • 0.50 • • .. 
\I .: 
I- 0.00 

• 0 
ii: 
s:: • • 0 

• ~ 
'; 
:; 
E 
::I 
0 

.!E. 

• • • ! 
\I 

.!E 

.,. 

2.28 

0 
\I 1/ C E 0 .. J/ .-• .. • .-

:. Q. .. &I: .... .... 
~ ::E ::E 

::; 0 0 

Figure 11. Government Cumulative Cash Flow Gradient 

2.00 

1.80 

1.60 

1.40 

1.20 

1.00 

0.80 

0.80 

0.40 

0.20 

0.00 

E .. 
:. 
::i 

Figure 12. 

1.87 

1.01 

E 
\I 
0 .. 
II. 

0.77 

I 
.,. .. 
C .. ... 
:I 
o 

1.23 

.,. 
\I 
C .. 
i 
o 

1.68 

.,. .. • o 
o 
\I 
o .. 
II. 

0.68 

I 
== ... 
o .. 
II. 

0.48 

:Iililililll 
\I • Q .,. 
Ie • ~ 

0.001 

\I • Q .,. 
! 
:::i 
IL • 

Commercial Cumulative Cash Flow Gradient 

0.13 

\I 

c! 
• II • > ;: 

197 



www.manaraa.com

198 

C. Cost Hyper Surface 

A complete factorial design of 27 PEG runs was completed to vary equipment 

lifetime, procurement delay and decrement in equipment price. The output measure was 

total cost per unit at the end of the five year run divided by initial cost per unit at the 

start (C). The following parameter abbreviations and values were used. 

• (life) equipment life in months [24.36,48] 

(dec) decrement in equipment price percent per year [10,20,30] 

(delay) procurement processing delay in months [3,12,21] 

The following quadric surface was least squares fit to the commercial data. 

C = .701-.003 life -.032 dec +.013 delay +.00006646 life 2 

+.0004526 dec 2 +.00007181 life dec -.0001424 life delay 

All terms were highly significant (.0008 t probability level for life coefficient, .0001 t 

probability level for all other factor coefficients). The multiple correlation coefficient 

squared was 99.7 percent, so only 0.3 percent of the data variability was not explained by 

the equation. To obtain the 40 percent total cost surface (60 percent reduction), we set 

C=.4 and solve for procurement delay (delay) in terms of equipment life (life) and 

decrement in equipment price (dec). 

delay = (301-.003 life+.OOOO6646 life 2 -.032 dec +.0004526 dec 2 

+.00007181 life dec) /(.013-.0001424 life) 

To obtain the gradient (grad) we take the partial derivatives of C relative to life, dec, 

and delay. The partial derivatives are shown below along with numerical values in 

parenthesis at the following point on the 60 percent cost reduction surface: 

• 36 month equipment life, 

20 percent decrement in equipment price, 



www.manaraa.com

199 

• 16.27 month procurement delay on the (40 percent cost reduction surface for 

life of 36 months and annual equipment price decrement of 20 percent). 

defdlife = -.003 -.0001424 delay +.00007181 dec +.00013292 life 

(.000904472) 

dClddec = -.032 +.0009052 dec +.00007181 life 

(-.0113108) 

dCfddelay = .013 - .0001424 life 

(.0078736) 

The gradient (grad) gives the direction of most rapid cost increase, and is 

perpendicular to the cost surface at the operating point We are interested in the negative 

gradient, i.e. the direction of most rapid cost decrease. Figure 10 shows the cost surface 

and perpendicular gradient Though we can only show 3 dimensional surfaces, the 

mathematical techniques apply equally to higher dimensions. An extension would be to 

fit a quadric surface to all parameters (14 dimensional) and calculate the gradient. Setting 

the partial derivatives equal to zero we can fmd the least cost and highest cost operating 

points. The Mathematica software package (reference 9) considerably aided the 

calculations and plotting 

performed in this section. 



www.manaraa.com

200 

IV. CONCLUSIONS 

The PEG model can quantitatively evaluate the economics of outsourcing. The 

model is general and can separately be applied to a wide variety of product categories. 

Products are categorized by their similarity in average parameter values. A by-product of 

the model is a cost per unit output versus simulation time. This should aid in setting 

fee-for-service algorithms. 

At the assumed operating point, the break-even commercial profit is 60 percent of 

sales. Thus outsourcing LAN services seems superior. However this is based on some 

key assumptions that should be checked: 

Average government installed base age of 30 months versus 15 months for 

commercial (37 percent break-even profit for both 15 months) 

• 000 system boundary that does not account for the depreciation tax losses to 

the Treasury 

• No government outsourcing monitoring costs (not contained in the model) 

There is no 000 salvage value - change in regulations or equipment 

refurbishment and reuse could change this assumption 

• LAN equipment price reductions of 20 percent per year (higher growth rates 

lead to a higher break even profit) 

Significant government cost reduction can be obtained from a reduction in procurement 

delays (7 percent of total costs by reducing delay from 12 months to 3 months). The 

optimal government equipment life time is approximately 42 months (for the assumed 

operating point). Lower capability growth rates and smaller operations and maintenance 

decrement rates would lead to longer optimal equipment life times. 



www.manaraa.com

201 

LAN services are only one category of product. Other categories should be defined for 

products with different characteristics (different average panuneter values operating point) 

such as: 

• Equipment price decrement rate 

• Operations and maintenance cost proportion 

• Procurement cost proportion and time delay 

Products can be ranked by the break even commercial profit on sales. The higbest profit 

products are the prime candidates for outsourcing. 

A by-product of the model is cost per unit versus time. This should guide setting 

fee-for-service algorithms. The model provides simplified sensitivity analysis, so the 

impact of changes in cost of any model parameter can be determined. Key parameters to 

be investigated include: 

Age of installed equipment base 

• Growth rate in installed equipment units 

.. Equipment lifetime 

• Improvement in equipment price and operations and maintenance cost per 

dollar invested 

• Initial equipment costs and annual operations and maintenance per dollar 

invested 

Corporate tax rates and depreciation schedules 

• Interest rate 

During model runs both installed base age and growth in installed base units were 

very sensitive parameters. These should be investigated fully in future extensions. 

A three-dimensional cost reduction surface and its gradient were presented. The 

technique should be extended to all the key parameters. An optimal operating point can 



www.manaraa.com

202 

be determined from the swface equation by setting its partial derivatives to zero. It 

should be possible to get an analytic solution to the model differential equations. This 

would both speed calculations and simplify the gradient calculation. 

The dot prcxluct of the gradient vector with a policy vector (plan to change parameter 

values) gives an estimate of the improvement obtainable by that policy. The fastest cost 

improvement is in the negative gradient direction. However some parameters are not 

controllable such as interest rate and corporate tax rate. Others will require process 

changes that take time such as legal requirements in procurement process and the 

government procurement process itself. Thus the policy vector differs practically from 

the gradient. The potential policy vector envelope should be explored in future work. 

V. REFERENCES 

[I] December 1990, A Five Year Plan For Meeting The Automatic Data Processing 

And Telecommunications Needs Of The Federal Government, Office of 

Management and Budget, Washington, D.C. 

[2] H.Neimeier, July 1991, Architecture Performance Evaluation (APE)- Model, 

MTR-9IWOOO9I, The MITRE Corporation, McLean, Virginia. 

[3] P. Byrnes, H.Neimeier, et. AI., January 1992, A Functional Economic Analysis 

Reference Methodology, MTR-9IWOOI98, The MITRE Corporation, McLean, 

Virginia. 

[4] H. Neimeier, February 1992, MfTRE Abbreviated Functional Economic Analysis 

Tool (MAFEA), MTR-92WOOOOO37, The MITRE Corporation, McLean, Virginia. 

[5] B. Richmond, et. AI .. , 1991, i Think, The visual thinking tool for the 90's: i 

Think User's Guide, High Performance Systems Inc., Hanover, New Hampshire. 



www.manaraa.com

[6] H.Neimeier, February 1992, Performance Evaluation Gradient (PEG), 

MTR-92WOOOOO38, The MITRE Corporation, McLean, Virginia. 

[7] S.Ficklin et.Al., March 1992, Premises Services Savings Assessments, 

WP 92W0000098, The MITRE Corp<ntion, McLean, Virginia. 

[8] H.Neimeier, April 1992, Performance Evaluation Surface (PES), The MITRE 

Corporation, McLean, Virginia. 

203 

[9] S.Wolfram, 1988, Mathematica: A System/or Doing Mathematics by Computer, 

Addison-Wesley Publishing Company, Redwood City, California. 



www.manaraa.com

DEFENSE BLOOD STANDARD 
ANALYSIS: 

SYSTEM FUNCTIONAL 
A CASE STUDY 

Carla von Bernewitz 
and 

Marty Zizzi 
Vector Research, Incorporated 

901 South Highland Street 
Arlington, Virginia 22204 USA 

ECONOMIC 

The Defense Blood Standard System (DBSS) Functional 

Economic Analysis (FEA) was the first FEA to be accepted by 

the Department of Defense (DoD) Director of Defense 

Information (DDI), Paul Strassmann. It was one of the first 

FEAs, also known as business cases, to analyze functional 

area costs and to apply business process reengineering in 

structuring alternatives to the current way of doing 

business. The DBSS FEA examines the business processes and 

practices of the DoD blood management function and analyzes 

changes in those practices or supporting information 

technologies. 

I. OVERVIEW 

A FEA examines current and propo~ed operations and 

expected financial results prior to the decision to invest 

in ~ny new business practices and associated information 

technologies. It quantifies functional area CO$ts, 

benefits, and risks, and adjusts the dollar amount for the 

time value of money. It may also aid in managing the 

business changes and associated benefits resulting from an 

investment decision. 



www.manaraa.com

206 

A FEA allows the current and forecasted costs of 

baseline operations over a stated economic life to be 

compared to alternatives associated with management 

initiatives. Sunk costs are not included in a FEA. A FEA 

provides a uniform basis for analyzing and comparing 

alternatives to the current way of doing business. It 

applies to decisions involving proposed and existing 

business methods and current and proposed information 

technologies. A FEA provides support for and input to the 

decision-making process by comparing investment in various 

alternatives to a baseline, where each alternative is 

defined as a management initiative leading to potential 

functional area savings. 

To present the quantitative data necessary to support 

the decision to invest in new business methods and 

information technologies, baseline costs are gathered and 

presented in the format required by the DDI. For the DBSS 

FEA, life cycle costs of continuing operations were 

forecasted in millions of then year (current) dollars over a 

12-year economic life, with a seven-year planning phase, 

both beginning in Fiscal Year 1991 (FY91). 

In order to perform the DBSS FEA responsively, a model 

and a set of spreadsheet tools were developed for compiling 

cost and benefits data for the baseline and selected 

alternatives. As noted above, costs are depicted in then 

year dollars, the conventional way DoD budgetary data are 

portrayed. However, the completed analysis requires a 

calculation of ROI which is calculated from discounted, or 

present value, cash flows, rather than from then year values 

themselves. The tools perform risk-adjusted present value 



www.manaraa.com

207 

comparisons and compute the ROI using 10% mid-year discount 

factors. 

The assessment of risk in a proposed project or 

alternative is perhaps the most difficult and yet most 

critical task that faces managers charged with decision 

making. Risk analysis attempts to account for underlying 

forecast error. Placed in financial terms, risk analysis 

allows senior managers to view the potential advantages of a 

proposed alternative balanced against the chances that 

predicted outcomes may not occur. The analytical 

methodology used to quantify and describe risk in the DBSS 

FEA uses a probability density function to model the risks. 

A lognormal form of this probability density is applied to 

create a variety of risk profiles that the functional expert 

can evaluate in terms of their view and experience. The 

lognormal form is useful because it is flexible yet 

quantitatively valid for a variety of perceived situations. 

II. METHODOLOGY 

The DBSS FEA was developed and iteratively refined in 

the sequence of six steps shown in figure 1 and listed 

below: 

determine scope of functional area; 

identify business practices; 

gather baseline costs; 

define new business practices, alternatives and 
associated benefits; 



www.manaraa.com

208 

perform financial simulations and analyze costs; 
and 

make recommendation(s) and plan for transition. 

Determine Fun:tbnal 
Scope 

~ 

Idertfy Business Practices 

~ 

Gather Baseline Costs f-- Model Practices and 
Alterrative Scerarios 

1 
Define Alterratives aoo 

Assocated Benefits , 
Perform Financial Simuations 

aoo Ana~ze Costs 
t 

Recommeoo an Alterrative 
aoo Plan for Transtbn 

Figure 1. Methodology 

These steps are explained in detail in the following 

paragraphs. Modeling is described as an analytical 

technique rather than a separate step. 



www.manaraa.com

209 

A. Scope 

Scoping the functional area in which the FEA will be 

performed is the first and perhaps the most challenging 

step. FEAs are performed for functional areas, rather than 

information systems, locations, or organizations. 

Functional areas may contain supporting information 

technology (systems) and other programs of interest to the 

FEA. Often, a functional area analysis crosses traditional 

budget or program definitions such as civilian personnel 

support for a variety of functions on a military base or 

post. A FEA provides the actual context in which business 

is conducted and therefore a realistic basis under which the 

business case will be analyzed. 

During the scoping process, it is helpful to refer 

back to traditional strategic planning products, such as the 

mission and vision. Such products help define the 

boundaries, direction, and activities of the functional 

area. A high-level 000 enterprise model has been defined, 

which also aids in the scopin~ process. Doctrine, policy, 

and guiding principles provide guidance as well. It may be 

necessary to revisit the scope several times, especially as 

baseline costs are gathered for the function. 

B. Business Practices 

Once the scope of the functional area has been 

defined, the business practices applicable to the functional 

activities, functions, and 

Whereas functions describe 

processes are identified. 

what is performed, business 

practices describe how a function is performed. 



www.manaraa.com

210 

To describe the functions, processes, and business 

practices of the functional area, a business process model 

is built. For the DBSS FEA, a business process model was 

built using Information Engineering (IE) techniques such as 

Function Decomposition Diagrams (FDDs) and Entity 

Relationship Diagrams (EROs). The Integrated computer-aided 

manufacturing Definition (IDEF) technique has since been 

chosen by the DDI for all business process modeling. 

Current 'business practices, their deficiencies, and 

supporting information technologies are first identified. 

Next, new business practices in the form of improvements and 

changes to current business practices are defined. Policy 

and statutory modifications may be required to support new 

business practices. New information technologies that are 

required to support and implement new business practices 

also are delineated. 

The application of information systems and information 

technologies comes into play only after revised business 

practices have been examined thoroughly and agreed upon. 

The FEA does not automatically imply the application of 

information technology in a recommendation or solution. 

Information systems and technology can, however, make 

possible changes in business methods that would have been 

otherwise infeasible. For example, bar codes allow supply 

items to be labeled, tracked, and reviewed automatically 

with an integrated data entry mechanism that reduces 

clerical error. Smart cards carry complete and accurate 

records more efficiently than bulky folders. The decision 

to use information technology may be driven, however, by a 

business need for new ways of doing business, such as 



www.manaraa.com

211 

lowering costs, or finding more accurate and timely ways of 

delivering products from vendors to final customers. 

C. Baseline Costs 

Baseline costs represent the cost of doing business as 

usual. Gathering the costs of maintaining and operating the 

functional area is the next step in a FEA. The costs are 

termed enterprise costs to convey the concept of an ongoing 

business enterprise. These are the costs needed to operate 

the entire functional area. 

For the DBSS FEA, baseline costs were either gathered 

from 000 budget documents, extracted from the Medical 

Expense and Performance Reporting System (MEPRS) of the 

Military Health Services System (MHSS) , or calculated from 

probabilities and costs for infectious diseases from MHSS 

data reports and literature citations from organizations 

such as the Centers for Disease Control (CDC). All baseline 

enterprise costs were modeled and aggregated into the five 

FEA categories required by the DOl: 

Personnel; 

Facilities; 

,. • Materiel; 

• Information Technology; and 

• Other. 



www.manaraa.com

212 

Personnel costs are defined in terms of dollars, 

although the initial personnel data were obtained as end 

strengths or Full Time Equivalents (FTEs). The budgeted 

authorized number of military officers, enlisted personnel, 

and civilians is identified for the functional area. 

Composite DoD military compensation rates from the 

President' s Budget are used to calculate personnel costs 

from the authorized number of personnel. Specific personnel 

costs may be substituted when this detail is available and 

serve to more accurately describe this important cost 

category. 

Facilities costs are based upon square footage 

requirements to operate the enterprise. Materiel costs 

include supplies and equipment. Information Technology 

costs are those that account for existing information 

systems in the baseline and new information systems in the 

alternatives. 

The ·Other" data category contains costs that are not 

already allocated to one of the previous four categories. 

For the DBSS FEA, the Other category was subdivided into two 

cost categories, Miscellaneous and Liability. Liability 

costs represent the health care and litigation-induced 

settlement costs for transfusion-transmitted diseases. 

There are several additional ways 

classified for these five cost categories. 

data may be 

Within each 

category, Operations costs and Management and Support (M&S) 

costs may be defined. Operations relates to those costs in 

direct support of delivering or producing the products and 

services of the functional area. M&S refers to those costs 

not directly related to the end products of the functional 

area. M&S costs are thus indirect costs and may be viewed 



www.manaraa.com

213 

as overhead costs. For the DBSS FEA, once total costs were 

confirmed, the percentage of M&S and Operations costs were 

identified. The allocation between operations and overhead 

may be an estimate, since accounting principles employed may 

not support a definitive derivation of overhead costs. 

with the exception of Personnel, costs in the five 

cost categories may also be classified into more than one 

type of funds or appropriation. Examples are Operations and 

Maintenance (O&M) , Other Procurement (OP), and Military 

Construction Program (MCP). O&M costs are budgeted costs 

used to maintain current resources. OP costs, also called 

procurement costs, are funds that are used for acquiring 

additional or new resources other than facilities, at costs 

that exceed a set dollar threshold. The threshold for FY91 

was $15, 000. MCP costs are used for major facility 

acquisitions. These costs are included in the baseline 

where they are planned, programmed, and funded. Additional 

investment costs for alternatives are not included in the 

baseline. 

D. Alternatives 

The foundation for consideration of alternatives is 

new business practices. These may be adopted from other 

successful enterprises, or developed specifically for the 

particular FEA. The alternatives are defined in terms of 

the functions and new business practices they support, and 

the information technology support that is required to 

render them feasible. The baseline is not considered an 

alternative; it is the status quo of doing business as 

usual. Three or more separate and distinct alternatives 



www.manaraa.com

214 

were required to support 

currently required for FEAs. 

the DBSS FEAi only two are 

These alternatives may vary by 

the number of functions and business practices implemented, 

their rate of implementation of business practices, or their 

degree of information technology support. 

After the alternatives have been described, the costs 

associated with them are enumerated. Investment costs for 

each of the alternatives are delineated. Benefits, which 

are defined as reductions in baseline costs, are quantified 

by the functional experts. Risk profiles are chosen for 

each alternative and the baseline as well. 

E. Financial Simulations 

A modeling tool supports the financial simulations 

that project risk adjusted discounted cash flows (RADCFs) 

for the baseline and each of the alternatives. This 

adjustment for risk allows expected value, low, and high 

ROIs, costs, and benefits to be calculated. The tool 

converts FY91 dollars into then-year (or current dollars) 

and net present value dollars over the FEA life cycle and 

calculates the ROI. Detailed and summarized financial costs 

and benefits in the required five cost categories, total 

costs and benefits, and ROIs are calculated. The tool also 

generates charts and graphs similar to the one shown in 

figure 2 that depict summarized financial simulations data. 

An analysis of the ROIs, risk, and life cycle costs 

and benefits of the alternatives compared to the baseline is 

performed once the financial simulations have been executed. 

While one alternative may have appeared preferable before 

simulating, the results from the simulations may lead to a 



www.manaraa.com

215 

different conclusion. The RADCFs are also examined, since 

the high and low values dictated by the risk profile may 

support different decisions than the expected value does. 

i 
'0 
01 
~ ., 
> 
i: ., 

.t::. .... -o 
\/I 
i: 
.2 
! 

1991 1992 1993 1994 
Years 1 -7 

I~""II' -DIS'S 

1995 

Figure 2. Financial Simulations 

F. Recommendations 

1996 1997 

The FEA concludes with a recommendation based on the 

results of the overall analysis. The analysis is summarized 

using a variety of graphical aids and is presented to the 



www.manaraa.com

216 

executive decision maker. A plan for transitioning or 

migrating to the recommended alternative is then prepared. 

III. Modeling 

In analyzing a business case, several interactive 

models are built, as shown in figure 3. All FEAs, however, 

begin with the business process model, which describes the 

activities and practices of the functional area. Using 

various costing techniques, such as Activity Based Costing 

(ABC), a model of the costs required to operate the 

functional area is developed. The following paragraphs 

discuss the cost models and the application of risk that is 

required for FEAs. 

In order to perform a FEA, it is useful to take 

advantage of the spreadsheet software commercially available 

for personal computers. Electronic spreadsheets facilitate 

the collection and creation of various data needed to 

perform the analysis. The application of a variety of 

modeling software packages designed to support the financial 

simulations that project RADCFs for the baseline and 

selected alternatives is desirable. Alternatively, a 

financial simulation tool can be developed that is expressly 

tailored for a particular FEA. 

A tailored tool was developed to support the DBSS FEA. 

The tool performs associated risk-adjusted net present value 

comparisons. It forecasts then-year costs for each of the 

major FEA categories and computes net present values and 

ROls. Risks are considered at the summary level for each 

alternative. Within an alternative, the same risk profile 

is applied to all cost categories. Risk prof iles are 



www.manaraa.com

217 

selected by functional users. All costs are presented in 

millions of then year dollars to one decimal place for the 

entire 12-year FEA life cycle. 

BUSIt-ESS POOCESS t.«>OEl 
.::: :', 

.'::::: ;m;:::. 

·i::!ill:!j::::i~;!ili:::;!il:} 
"::: ::." . . 

Al~:!~I:~:~ FLOWS 

Akemuves 

-- - - - - -

BlOOEf 

.oM 

PDII 

I rruilnt"s .... t I 

BaseUne Costs 

----"':S:;I; II,.;:::; JaI,:;I,II J;III;::::III';:;I;I 
,:,:;:,:&: I:,:a=,:: :a:t:,:.:a ;,:a:a:;:: r-:::::::: 
1:1:::::1 1:1:1:=:: :1:1:::1;1 :1:1:1:1::1:1:::1:1: 
1:1:1;1:1 1:1:1;1:1 :&:1:1:1:1 :1:1:t:1::I:I:I:I:I: 

1:1:1:::: 1:1:t!1;1 :1:1:1:1;1 :::t:I:I::I:I:::I:I: 

I~~-:::':':~:~:I~ 
1:::::=:= SII:h::: :1::::;1;: :::1:::::11:,:1:::=: 

Figure 3. Modeling 



www.manaraa.com

218 

A. Risk 

The model assumes that the risk inherent in the 

baseline and each alternative can be identified and modeled 

in terms of a normalized probability density function of 

cost multipliers. The shape of cost multiplier 

distributions can be varied to accommodate specific a priori 

assumptions of risk. A set of risk distributions for 

information technology is suggested by Mr. Paul Strassmann 

in chapter nine of The Business Value of Computers. Mr. 

Strassmann indicates the suggested distributions are based 

upon his experience with multiple systems, but are not based 

upon rigorous statistical analysis. The use of the 

lognormal form of these distributions permits flexibility in 

assisting the functional expert to describe the environment 

surrounding risk while maintaining quantitative validity. 

Thus, a risk profile can be constructed that fits the 

perceptions and experiences of the functional expert as to 

how risk might vary depending on the alternative selected. 

It can depict that costs are stable and well controlled, 

highly volatile, or somewhere in between. 

After discussions and consultations with the 

functional experts for all alternatives, each risk profile 

is mathematically derived. A risk profile is a distribution 

of cost multipliers and their associated probabilities. The 

probability of each cost multiplier is based on its 

frequency in 2,000 sample observations. The resulting 

profile depicts the cost multipliers on the x-axis and the 

probability of the multiplier on the y-axis. 

The risk profiles were constructed using a three

parameter equation of a lognormal form as specified in 



www.manaraa.com

219 

Distributions in Statistics, Volume 1, chapter 14. The 

parameters used were the standard deviation, the mean, and a 

shift parameter. In this application, the "expected value" 

of a risk profile was interpreted as the mode of that 

distribution. This definition of expected value was driven 

by an understanding that budget planners would be motivated 

by their targeted authorizations -- the most likely amounts. 

They would not be motivated by mathematical computations 

that do not reflect their nominal, or budgeted, amounts. 

Profiles designed this way imply that the cash flows 

developed with the functional experts would be the likely 

outcome in a one-time draw of that alternative. If multiple 

draws were conducted, however, then the simulation model 

shows the distribution of all outcomes, including the most 

likely outcome. 

bounds of the 

Risk is specified by the lower and upper 

probability density function (standard 

deviation parameters) and its shape. 

The creation of each risk profile followed the same 

process. The first step was to determine the nominal budget 

amounts. As stated above, these were interpreted as the 

"expected," or most likely values. The next step was to 

determine the known volatility of a cost estimate for an 

alternative. This high-level analysis of the 

interdependencies of cost elements and of the potential 

weaknesses of an alternative was the basis for determining 

the endpoints of its cost multiplier distribution. A better 

understanding of the character of the risk facing an 

alternative was gained at this stage as well. It was this 

understanding of the character of the risk that was used to 

mathematically define the shape of the risk distribution. 

As endpoints and the mode of the curve were predefined, it 



www.manaraa.com

220 

was a matter of adjusting the standard deviation and the 

shift parameter to obtain the appropriate shape. 

In aggregating costs for a particular alternative, the 

model used in the OBSS FEA assumes that elements from each 

category are perfectly correlated. This assumption is 

conservative in the sense that outcomes calculated for total 

project cost depict a wider dispersion than if category 

costs were randomly or only partially correlated. If costs 

are completely uncorrelated, the probabilities associated 

with the extremes for aggregated costs would be less, as 

independent samples of costs for each category when added 

would tend toward the expected value. The perfect 

correlation approach was selected for computational 

simplicity, ease of implementation in a spreadsheet 

environment, and consistency with the belief that some 

correlation exists between categories. All results for this 

business case must be considered with the above assumptions 

in mind. 

The impact of the relative risk of the baseline and 

each alternative becomes apparent as the distributions of 

benefits and ROIs are calculated. The model calculates ROI 

as the quotient of the baseline discounted cost minus the 

alternative discounted cost (including investment) divided 

by the alternative discounted investment. This calculation 

is performed for every possible combination of the derived 

cost multipliers for the baseline and alternatives (twenty 

values for the baseline and each alternative resulting in 

400 total observations). The frequency distribution of 

these individual ROI values is supported by the underlying 

risk for each alternative, since each alternative, as well 

as the baseline, already is influenced by specific risk 



www.manaraa.com

221 

profiles. The calculation includes the cost of the 

investment in the alternative. Thus, the resultant ROI can 

be considered a net value. 

B. Cost Factors 

The model for this FEA uses deflators from the Office 

of the Secretary of Defense (OSD) Comptroller, and real 

growth rates for cost elements to depict costs as either 

constant year or then-year (current) dollars. The analysis 

in then year dollars shows amounts that relate directly to 

budgeted dollar requirements. The analysis in constant year 

dollars removes inflation from the picture and reveals the 

effects of real growth on costs. When data were obtained 

for FYs other than FY91, the appropriate deflators and 

growth rates were applied. 

The model uses a mid-year discount factor of 10% as 

provided in the Office of Management and Budget guidance 

(Circular A79-Revised, 27 March 1972). Discounting cash 

flows is a method to adjust dollar amounts to show the cost 

of capital or the opportunity cost of the cash flow. The 

opportunity cost of cash expenditures is the return on the 

next best available alternative. The discount rate is 

generally accepted as a proxy for the return available in 

the government long-term bond market, which is generally 

considered the most reasonable investment alternative. Use 

of the government long-term bond rate assumes that the risk 

preference of the investor is indifferent to the level of 

investment risk between the alternative and the government 

long-term bond market. If the investor's risk preference 

allows a relatively higher level of investment risk than 



www.manaraa.com

222 

that of the government long-term bond rate, it may be 

appropriate to adjust the discount rate accordingly. 

C. Life Cycle 

The DBSS FEA uses FY91 as the beginning of the life 

cycle. The length of the analysis is 12 years, which 

represents the economic life of the business practice 

changes and supporting information technologies. The 

economic life may range from 12 to 20 or more years. This 

12-year period includes a seven-year planning life cycle 

with an additional 5 years of residuals. Residuals allow 

benefits beyond the planning phase to be captured and 

included in ROI calculations. All costs are detailed by 

year from the base year FY91 through FY97, the end of the 

planning period. 

through FY2002. 

Residual values are calculated for FY98 

IV. REFERENCES 

[1] Bureau of Labor Statistics, Consumer Price Index Urban 
Consumers, Medical Components unadjusted May 91/May 90 
annualized rates. 

[2] Circular A79-Revised, 27 March 1972. 

[3] Department of Defense Corporate 
Management, ASD (C3I), April 1991. 

Information 

[4] Distributions in Statistics, Volume 1, Chapter 14, pp 
112-114. 

[5] OMS Circular A-79-Revised, 27 March 1972. 

[6] Strassmann, Paul A., Director of 
To the House Appropriations 
Subcommittee, 24 April 1991. 

Defense Information, 
Committee Defense 



www.manaraa.com

223 

[7] Strassrnann, Paul A., The Business Value of Computers, 
1991. 

[8] Strassrnann, Paul A., The Goals and Directions of DoD 
Corporate Information Management Briefing, 19 June 
1991. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions false
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




